15 resultados para phase-contrast imaging
em DigitalCommons@The Texas Medical Center
Resumo:
The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^
Resumo:
Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.
Resumo:
Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.
Resumo:
Dynamic contrast agent-enhanced magnetic resonance imaging (DCE MRI) data, when analyzed with the appropriate pharmacokinetic models, have been shown to provide quantitative estimates of microvascular parameters important in characterizing the angiogenic activity of malignant tissue. These parameters consist of the whole blood volume per unit volume of tissue, v b, transport constant from the plasma to the extravascular, extracellular space (EES), k1 and the transport constant from the EES to the plasma, k2. Parameters vb and k1 are expected to correlate with microvascular density (MVD) and vascular permeability, respectively, which have been suggested to serve as surrogate markers for angiogenesis. In addition to being a marker for angiogenesis, vascular permeability is also useful in estimating tumor penetration potential of chemotherapeutic agents. ^ Histological measurements of the intratumoral microvascular environment are limited by their invasiveness and susceptibility to sampling errors. Also, MVD and vascular permeability, while useful for characterizing tumors at a single time point, have shown less utility in longitudinal studies, particularly when used to monitor the efficacy of antiangiogenic and traditional chemotherapeutic agents. These limitations led to a search for a non-invasive means of characterizing the microvascular environment of an entire tumor. ^ The overall goal of this project was to determine the utility of DCE MRI for monitoring the effect of antiangiogenic agents. Further applications of a validated DCE MRI technique include in vivo measurements of tumor microvascular characteristics to aid in determining prognosis at presentation and in estimating drug penetration. DCE MRI data were generated using single- and dual-tracer pharmacokinetic models with different molecular-weight contrast agents. The resulting pharmacokinetic parameters were compared to immunohistochemical measurements. The model and contrast agent combination yielding the best correlation between the pharmacokinetic parameters and histological measures was further evaluated in a longitudinal study to evaluate the efficacy of DCE MRI in monitoring the intratumoral microvascular environment following antiangiogenic treatment. ^
Resumo:
Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.
Resumo:
Hypothesis and Objectives PEGylated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Secondly, visualization of the (real-time) therapeutic effects of tissue-Plasminogen Activator (t-PA) on pulmonary embolism (PE) was attempted. Materials and Methods Six rabbits (approximate 4 kg weight) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml, GE HealthCare, Princeton, NJ) at a dose of 1400 mgI per animal and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mgI/animal). Subsequently, five animals were injected with 2mg t-PA and imaging continued for up to 4 ½ hours. Results Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited non uniform opacification and rapid clearance post injection. Three out of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, Pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10–57%, mean 42%). One animal showed no response to t-PA. Conclusions Liposomal blood pool agents effectively identified acute PE without need for re-injection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections
Resumo:
High resolution, vascular magnetic resonance imaging of the spine region in small animals poses several challenges. The small anatomical features, extravascular diffusion, and the low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomical features of the perispinal vasculature not visible with conventional contrast agent (Gd-DTPA).
Resumo:
BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.
Resumo:
RATIONALE AND OBJECTIVES: Polyethylene glycol-coated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Also, visualization of the (real-time) therapeutic effects of tissue plasminogen activator (t-PA) on pulmonary embolism (PE) was attempted. MATERIALS AND METHODS: Six rabbits (weight approximately 4 kg) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml; GE HealthCare, Princeton, NJ) at a dose of 1400 mg I per animal, and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mg I/animal). Subsequently, five animals were injected with 2 mg of t-PA and imaging continued for up to 4(1/2) hours. RESULTS: Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited nonuniform opacification and rapid clearance postinjection. Three of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10-57%, mean 42%). One animal showed no response to t-PA. CONCLUSIONS: Liposomal blood pool agents effectively identified acute PE without need for reinjection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections.
Resumo:
BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.
Resumo:
The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^
Resumo:
Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^
Resumo:
Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^
Resumo:
Objective::Describe and understand regional differences and associated multilevel factors (patient, provider and regional) to inappropriate utilization of advance imaging tests in the privately insured population of Texas. Methods: We analyzed Blue Cross Blue Shield of Texas claims dataset to study the advance imaging utilization during 2008-2010 in the PPO/PPO+ plans. We used three of CMS "Hospital Outpatient Quality Reporting" imaging efficiency measures. These included ordering MRI for low back pain without prior conservative management (OP-8) and utilization of combined with and without contrast abdominal CT (OP-10) and thorax CT (OP-11). Means and variation by hospital referral regions (HRR) in Texas were measured and a multilevel logistic regression for being a provider with high values for any the three OP measures was used in the analysis. We also analyzed OP-8 at the individual level. A multilevel logistic regression was used to identify predictive factors for having an inappropriate MRI for low back pain. Results: Mean OP-8 for Texas providers was 37.89%, OP-10 was 29.94% and OP-11 was 9.24%. Variation was higher for CT measure. And certain HRRs were consistently above the mean. Hospital providers had higher odds of high OP-8 values (OP-8: OR, 1.34; CI, 1.12-1.60) but had smaller odds of having high OP-10 and OP-11 values (OP-10: OR, 0.15; CI, 0.12-0.18; OP-11: OR, 0.43; CI, 0.34-0.53). Providers with the highest volume of imaging studies performed, were less likely to have high OP-8 measures (OP-8: OR, 0.58; CI, 0.48-0.70) but more likely to perform combined thoracic CT scans (OP-11: OR, 1.62; CI, 1.34-1.95). Males had higher odds of inappropriate MRI (OR, 1.21; CI, 1.16-1.26). Pattern of care in the six months prior to the MRI event was significantly associated with having an inappropriate MRI. Conclusion::We identified a significant variation in advance imaging utilization across Texas. Type of facility was associated with measure performance, but the associations differ according to the type of study. Last, certain individual characteristics such as gender, age and pattern of care were found to be predictors of inappropriate MRIs.^