8 resultados para pesticides contamination
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVES: To detect the influence of blood contamination (BC) on the bond strength (BS) of a self-etching bonding system (SES) to enamel and dentine. METHODS: 25 human molars were longitudinally sectioned on the mesio-distal axis in order to obtain 50 specimens, which were embedded in acrylic resin. At first, the specimens were ground to expose a flat surface of enamel, and a bond strength test was performed. Afterwards, the samples were ground again in order to obtain a flat surface of dentine. Ten groups (total: n=100) were assigned according to substrate (enamel and dentine), step in the bonding sequence when contamination occurred (before the acidic primer and after the bonding resin), and contamination treatment (dry or rinse and dry procedure). Fresh human blood was introduced either before or after SES application (Clearfil SE Bond) and treated with air drying, or by rinsing and drying following application. Composite resin (Filtek Z-250,3M ESPE) was applied as inverted, truncated cured cones that were debonded in tension. RESULTS: The mean tensile BS values (MPa) for enamel/dentine were 19.4/23.0 and 17.1/10.0 for rinse-and-dry treatment (contamination before and after SES, respectively); while the measurements for the dry treatment, 16.2/23.3 and 0.0/0.0 contamination before and after SES, respectively. CONCLUSIONS: It was determined that blood contamination impaired adhesion to enamel and dentine when it occurred after bond light curing. Among the tested contamination treatments, the rinse-and-dry treatment produced the highest bond strength with BC after SES application, but it was not sufficient to recover the BS in the contamination-free group.
Resumo:
A cross-sectional study on the use of three pesticides and their presence in drinking water sources was conducted in Githunguri/Kiaria community between January 1994-March 1995. The main objective of the study was to determine the extent to which some of the pesticides used by the Githunguri/Kiaria agricultural community were polluting their drinking water sources. Due to monetary and physical limitations, only DDT, its isomers and metabolites, carbofuran and carbaryl pesticides were identified and used as surrogates of pollution for the other pesticides.^ The study area was divided into high and low lying geographic surface areas. Thirty-four and 38 water sampling sites were randomly selected respectively. During wet and dry seasons, a total of 144 water samples were collected and analyzed at the Kenya Bureau of Standards Laboratory in Nairobi. Gas chromatography was used to analyze samples for possible presence of DDT, its isomers and metabolites, while high pressure liquid chromatography was used to analyze samples for carbofuran and carbaryl pesticides.^ Six sites testing positively for DDT, its isomers and metabolites represented 19.4% of the total sampled sites, with a mean concentration of 0.00310 ppb in the dry season and 0.0130 ppb in the wet season. All the six sites testing positively for the same pesticide exceeded the European maximum contaminant limit (MCL) in the wet season, and only one site exceeded the European MCL in the dry season.^ Those sites testing positively for carbofuran and carbaryl represented 5.6% of the total sampled sites. The mean concentration for the carbofuran at the sites was 2.500 ppb and 1.590 ppb in the dry and wet seasons respectively. Similarly, the mean concentration for carbaryl at the sites was 0.281 ppb in the dry season and 0.326 ppb in the wet season.^ One site testing positively for carbofuran exceeded the European MCL and WHO set limit in the wet season, while one site testing positively for the same pesticide exceeded the USA, Canada, European and WHO MCLs in the dry season. Similarly, one site which tested positively for carbaryl pesticide exceeded the European MCL in both seasons.^ Out of the 2,587 community members in the study area, 333 (13%) were exposed through their drinking water sources to the three pesticides investigated by this study. As a public health measure, integrated pest management approaches (IPM), protection of the wells and education of the community is necessary to minimize the pollution of the environment and safeguard the drinking water sources from pollution by the pesticides. ^
Resumo:
Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^
Resumo:
The objectives of this research were (1) to study the effect of contact pressure, compression time, and liquid (moisture content of the fabric) on the transfer by sliding contact of non-fixed surface contamination to protective clothing constructed from uncoated, woven fabrics, (2) to study the effect of contact pressure, compression time, and liquid content on the subsequent penetration through the fabric, and (3) to determine if varying the type of contaminant changes the effect of contact pressure, compression time, and liquid content on the transfer by sliding contact and penetration of non-fixed surface contamination. ^ It was found that the combined influence of the liquid (moisture content of the fabric), load (contact pressure), compression time, and their interactions significantly influenced the penetration of all three test agents, sucrose- 14C, triolein-3H, and starch-14C through 100% cotton fabric. The combined influence of the statistically significant main effects and their interactions increased the penetration of triolein- 3H by 32,548%, sucrose-14C by 7,006%, and starch- 14C by 1,900%. ^
Resumo:
Introduction. Lake Houston serves as a reservoir for both recreational and drinking water for residents of Houston, Texas, and the metropolitan area. The Texas Commission on Environmental Quality (TCEQ) expressed concerns about the water quality and increasing amounts of pathogenic bacteria in Lake Houston (3). The objective of this investigation is to evaluate water quality for the presence of bacteria, nitrates, nitrites, carbon, phosphorus, dissolved oxygen, pH, turbidity, suspended solids, dissolved solids, and chlorine in Cypress Creek. The aims of this project are to analyze samples of water from Cypress Creek and to render a quantitative and graphical representation of the results. The collected information will allow for a better understanding of the aqueous environment in Cypress Creek.^ Methods. Water samples were collected in August 2009 and analyzed in the field and at UTSPH laboratory by spectrophotometry and other methods. Mapping software was utilized to develop novel maps of the sample sites using coordinates attained with the Global Positioning System (GPS). Sample sites and concentrations were mapped using Geographic Information System (GIS) software and correlated with permitted outfalls and other land use characteristic.^ Results. All areas sampled were positive for the presence of total coliform and Escherichia coli (E. coli). The presences of other water contaminants varied at each location in Cypress Creek but were under the maximum allowable limits designated by the Texas Commission on Environmental Quality. However, dissolved oxygen concentrations were elevated above the TCEQ limit of 5.0 mg/L at majority of the sites. One site had near-limit concentration of nitrates at 9.8 mg/L. Land use above this site included farm land, agricultural land, golf course, parks, residential neighborhoods, and nine permitted TCEQ effluent discharge sites within 0.5 miles upstream.^ Significance. Lake Houston and its tributary, Cypress Creek, are used as recreational waters where individuals may become exposed to microbial contamination. Lake Houston also is the source of drinking water for much of Houston/Harris and Galveston Counties. This research identified the presence of microbial contaminates in Cypress Creek above TCEQ regulatory requirements. Other water quality variables measured were in line with TCEQ regulations except for near-limit for nitrate at sample site #10, at Jarvis and Timberlake in Cypress Texas.^
Resumo:
The study was carried out at St. Luke's Episcopal Hospital to evaluate environmental contamination of Clostridium difficile in the infected patient rooms. Samples were collected from the high risk areas and were immediately cultured for the presence of Clostridium difficile . Lack of microbial typing prevented the study of molecular characterization of the Clostridium difficile isolates obtained led to a change in the study hypothesis. The study found a positivity of 10% among 50 Hospital rooms sampled for the presence of Clostridium difficile. The study provided data that led to recommendations that routine environmental sampling be carried in the hospital rooms in which patients with CDAD are housed and that effective environmental disinfection methods are used. The study also recommended molecular typing methods to allow characterization of the CD strains isolated from patients and environmental sampling to determine their type, similarity and origin.^
Resumo:
Outbreaks of diarrhea are common among children in day care centers (DCC). Enteropathogens associated with these outbreaks are spread by the fecal-oral route through contaminated hands or environmental objects. This prospective study was undertaken to determine the prevalence of fecal coliform (FC) contamination in the DCC environment. Ten rooms in 6 DCC housing 121 children $<$2 years of age were studied for 13 weeks. Inanimate objects (1275), toy balls (724), and hands (954) were cultured 1-3 times per week. FC contamination was common during each week of study and was significantly (p $<$ 0.05) greater for objects, toy balls, and hands of children in toddler compared to infant rooms. In 5 rooms in which clothes were worn over diapers, there was a significantly lower prevalence of FC of toy balls (p $<$ 0.005), inanimate objects (p $<$ 0.05), and hands of children (p $<$ 0.001) and caregivers (p $<$ 0.05) when compared to rooms in which overclothes were not worn. Occurrence of diarrhea was significantly associated with increased contamination of caregivers' and children's hands. Using plasmid analysis of trimethoprim (TMP)-resistant Escherichia coli, stool and environmental isolates from individual DCC rooms had the same plasmid patterns, which were unique to each center. In summary, FC of environmental isolates and hands of children and caregivers in DCC is common; toy balls can serve as sentinels of contamination; FC can be significantly decreased by use of clothes worn over diapers; and plasmid analysis of E. coli strains showed the same patterns from stool and environmental isolates. ^
Resumo:
Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^