5 resultados para pacs: knowledge engineering tools

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Despite effective solutions to reduce teen birth rates, Texas teen birth rates are among the highest in the nation. School districts can impact youth sexual behavior through implementation of evidence-based programs (EBPs); however, teen pregnancy prevention is a complex and controversial issue for school districts. Subsequently, very few districts in Texas implement EBPs for pregnancy prevention. Additionally, school districts receive little guidance on the process for finding, adopting, and implementing EBPs. Purpose: The purpose of this report is to present the CHoosing And Maintaining Programs for Sex education in Schools (CHAMPSS) Model, a practical and realistic framework to help districts find, adopt, and implement EBPs. Methods: Model development occurred in four phases using the core processes of Intervention Mapping: 1) knowledge acquisition, 2) knowledge engineering, 3) model representation, and 4) knowledge development. Results: The CHAMPSS Model provides seven steps, tailored for school-based settings, which encompass phases of assessment, preparation, implementation, and maintenance: Prioritize, Asses, Select, Approve, Prepare, Implement, and Maintain. Advocacy and eliciting support for adolescent sexual health are also core elements of the model. Conclusion: This systematic framework may help schools increase adoption, implementation, and maintenance for EBPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any robust quality control program is the determination of significant deviations from standard or baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation (1). This thesis describes the development and testing of new methods for monitoring detector uniformity. These techniques provide more quantitative, sensitive, and specific feedback to the reviewer so that he or she may be better equipped to identify performance degradation prior to its manifestation in clinical images. The methods exploit the temporal nature of detector degradation and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition. These techniques were tested on synthetic phantom data using different degradation functions, as well as on experimentally acquired time series floods with induced, progressively worsening defects present within the field-of-view. The sensitivity of conventional, global figures-of-merit for detecting changes in uniformity was evaluated and compared to these new image-space techniques. The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity prior to any single flood image’s having a NEMA uniformity value in excess of 5%. The sensitivity of these image-space algorithms was found to depend on the size and magnitude of the non-uniformities, as well as on the nature of the cause of the non-uniform region. A trend analysis of the conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity. The image-space algorithms are computationally efficient. Therefore, the image-space algorithms should be used concomitantly with the trending of the global figures-of-merit in order to provide the reviewer with a richer assessment of gamma camera detector uniformity characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We have carried out an extensive qualitative research program focused on the barriers and facilitators to successful adoption and use of various features of advanced, state-of-the-art electronic health records (EHRs) within large, academic, teaching facilities with long-standing EHR research and development programs. We have recently begun investigating smaller, community hospitals and out-patient clinics that rely on commercially-available EHRs. We sought to assess whether the current generation of commercially-available EHRs are capable of providing the clinical knowledge management features, functions, tools, and techniques required to deliver and maintain the clinical decision support (CDS) interventions required to support the recently defined "meaningful use" criteria. METHODS: We developed and fielded a 17-question survey to representatives from nine commercially available EHR vendors and four leading internally developed EHRs. The first part of the survey asked basic questions about the vendor's EHR. The second part asked specifically about the CDS-related system tools and capabilities that each vendor provides. The final section asked about clinical content. RESULTS: All of the vendors and institutions have multiple modules capable of providing clinical decision support interventions to clinicians. The majority of the systems were capable of performing almost all of the key knowledge management functions we identified. CONCLUSION: If these well-designed commercially-available systems are coupled with the other key socio-technical concepts required for safe and effective EHR implementation and use, and organizations have access to implementable clinical knowledge, we expect that the transformation of the healthcare enterprise that so many have predicted, is achievable using commercially-available, state-of-the-art EHRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The failure rate of health information systems is high, partially due to fragmented, incomplete, or incorrect identification and description of specific and critical domain requirements. In order to systematically transform the requirements of work into real information system, an explicit conceptual framework is essential to summarize the work requirements and guide system design. Recently, Butler, Zhang, and colleagues proposed a conceptual framework called Work Domain Ontology (WDO) to formally represent users’ work. This WDO approach has been successfully demonstrated in a real world design project on aircraft scheduling. However, as a top level conceptual framework, this WDO has not defined an explicit and well specified schema (WDOS) , and it does not have a generalizable and operationalized procedure that can be easily applied to develop WDO. Moreover, WDO has not been developed for any concrete healthcare domain. These limitations hinder the utility of WDO in real world information system in general and in health information system in particular. Objective: The objective of this research is to formalize the WDOS, operationalize a procedure to develop WDO, and evaluate WDO approach using Self-Nutrition Management (SNM) work domain. Method: Concept analysis was implemented to formalize WDOS. Focus group interview was conducted to capture concepts in SNM work domain. Ontology engineering methods were adopted to model SNM WDO. Part of the concepts under the primary goal “staying healthy” for SNM were selected and transformed into a semi-structured survey to evaluate the acceptance, explicitness, completeness, consistency, experience dependency of SNM WDO. Result: Four concepts, “goal, operation, object and constraint”, were identified and formally modeled in WDOS with definitions and attributes. 72 SNM WDO concepts under primary goal were selected and transformed into semi-structured survey questions. The evaluation indicated that the major concepts of SNM WDO were accepted by 41 overweight subjects. SNM WDO is generally independent of user domain experience but partially dependent on SNM application experience. 23 of 41 paired concepts had significant correlations. Two concepts were identified as ambiguous concepts. 8 extra concepts were recommended towards the completeness of SNM WDO. Conclusion: The preliminary WDOS is ready with an operationalized procedure. SNM WDO has been developed to guide future SNM application design. This research is an essential step towards Work-Centered Design (WCD).