4 resultados para organic vapor phase epitaxy

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the accuracy and precision of airborne volatile organic compound (VOC) concentrations measured using passive air samplers (3M 3500 organic vapor monitors) over extended sampling durations (9 and 15 days). A total of forty-five organic vapor monitor samples were collected at a State of Texas air monitoring site during two different sampling periods (July/August and November 2008). The results of this study indicate that for most of the tested compounds, there was no significant difference between long-term (9 or 15 days) sample concentrations and the means of parallel consecutive short-term (3 days) sample concentrations. Biases of 9 or 15-day measurements vs. consecutive 3-day measurements showed considerable variability. Those compounds that had percent bias values of <10% are suggested as acceptable for long-term sampling (9 and 15 days). Of the twenty-one compounds examined, 10 compounds are classified as acceptable for long-term sampling; these include m,p-xylene, 1,2,4-trimethylbenzene, n-hexane, ethylbenzene, benzene, toluene, o-xylene, d-limonene, dimethylpentane and methyl tertbutyl ether. The ratio of sampling procedure variability relative to variability within days was approximately 1.89 for both sampling periods for the 3-day vs. 9-day comparisons and approximately 2.19 for both sampling periods for the 3-day vs. 15-day comparisons. Considerably higher concentrations of most VOCs were measured during the November sampling period compared to the July/August period. These differences may be a result of varying meteorological conditions during these two time periods, e.g., the differences in wind direction, and wind speed. Further studies are suggested to further evaluate the accuracy and precision of 3M 3500 organic vapor monitors over extended sampling durations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exposure system was constructed to evaluate the performance of a personal organic vapor dosimeter (3520 OVM) at ppb concentrations of nine selected target volatile organic compounds (VOCs). These concentration levels are generally encountered in community air environments, both indoor and outdoor. It was demonstrated that the chamber system could provide closely-controlled conditions of VOC concentrations, temperature and relative humidity (RH) required for the experiments. The target experimental conditions included combinations of three VOC concentrations (10, 20 and 200 $\rm\mu g/m\sp3),$ three temperatures (10, 25 and 40$\sp\circ$C) and three RHs (12, 50 and 90% RH), leading to a total of 27 exposure conditions. No backgrounds of target VOCs were found in the exposure chamber system. In the exposure chamber, the variation of the temperature was controlled within $\pm$1$\sp\circ$C, and the variation of RH was controlled within $\pm$1.5% at 12% RH, $\pm$2% at 50% RH and $\pm$3% at 90% RH. High-emission permeation tubes were utilized to generate the target VOCs. Various patterns of the permeation rates were observed over time. The lifetimes and permeation rates of the tubes differed by compound, length of the tube and manufacturer. By carefully selecting the source and length of the tubes, and closely monitoring tube weight loss over time, the permeation tubes can be used for delivering low and stable concentrations of VOCs during multiple days.^ The results of this study indicate that the performance of the 3520 OVM is compound-specific and depends on concentration, temperature and humidity. With the exception of 1,3-butadiene under most conditions, and styrene and methylene chloride at very high relative humidities, recoveries were generally within $\pm$25% of theory, indicating that the 3520 OVM can be effectively used over the range of concentrations and environmental conditions tested with a 24-hour sampling period. Increasing humidities resulted in increasing negative bias from full recovery. Reverse diffusion conducted at 200 $\rm\mu g/m\sp3$ and five temperature/humidity combinations indicated severe diffusion losses only for 1,3-butadiene, methylene chloride and styrene under increased humidity. Overall, the results of this study do not support the need to employ diffusion samplers with backup sections for the exposure conditions tested. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) is a well established health hazard, being causally associated to lung cancer and cardiovascular disease. ETS regulations have been developed worldwide to reduce or eliminate exposure in most public places. Restaurants and bars constitute an exception. Restaurants and bar workers experience the highest ETS exposure levels across several occupations, with correspondingly increased health risks. In Mexico, previous exposure assessment in restaurants and bars showed concentrations in bars and restaurants to be the highest across different public and workplaces. Recently, Mexico developed at the federal level the General Law for Tobacco Control restricting indoors smoking to separated areas. AT the local level Mexico City developed the Law for the Protection of Non-smokers Health, completely banning smoking in restaurants and bars. Studies to assess ETS exposure in restaurants and bars, along with potential health effects were required to evaluate the impact of these legislative changes and to set a baseline measurement for future evaluations.^ A large cross-sectional study conducted in restaurants and bars from four Mexican cities was conducted from July to October 2008, to evaluate the following aims: Aim 1) Explore the potential impact of the Mexico City ban on ETS concentrations through comparison of Mexico City with other cities. Aim 2). Explore the association between ETS exposure, respiratory function indicators and respiratory symptoms. Aim 3). Explore the association between ETS exposure and blood pressure and heart rate.^ Three cities with no smoking ban were selected: Colima (11.5% smoking prevalence), Cuernavaca (21.5% smoking prevalence) and Toluca (27.8% smoking prevalence). Mexico City (27.9% smoking prevalence), the only city with a ban at the time of the study, was also selected. Restaurants and bars were randomly selected from municipal records. A goal of 26 restaurants and 26 bars per city was set, 50% of them under 100 m2. Each establishment was visited during the highest occupancy shift, and managers and workers answered to a questionnaire. Vapor-phase nicotine was measured using passive monitors, that were activated at the beginning and deactivated at the end of the shift. Also, workers participated at the beginning and end of the shift in a short physical evaluation, comprising the measurement of Forced Expiratory Volume in the first second (FEV1) and Peak Expiratory Flow (PEF), as well as blood pressure and heart rate.^ A total of 371 establishments were invited, 219 agreed to participate for a 60.1% participation rate. In them, 828 workers were invited, 633 agreed to participate for a 76% participation rate. Mexico City had at least 4 times less nicotine compared to any of the other cities. Differences between Mexico City and other cities were not explained by establishment characteristics, such as ventilation or air extraction. However, differences between cities disappeared when ban mechanisms, such as policy towards costumer's smoking, were considered in the models. An association between ETS exposure and respiratory symptoms (cough OR=1.27, 95%CI=1.04, 1.55) and respiratory illness (asthma OR=1.97, 95%CI=1.20, 3.24; respiratory illness OR=1.79, 95%CI=1.10, 2.94) was observed. No association between ETS and phlegm, wheezing or respiratory infections was observed. No association between ETS and any of the spirometric indicators was observed. An association between ETS exposure and increased systolic and diastolic blood pressure at the end of the shift was observed among non-smokers (systolic blood pressure beta=1.51, 95%CI=0.44, 2.58; diastolic blood pressure beta=1.50, 95%CI=0.72, 2.28). The opposite effect was observed in heavy smokers, were increased ETS exposure was associated with lower blood pressure at the end of the shift (systolic blood pressure beta=1.90, 95%CI=-3.57, -0.23; diastolic blood pressure beta=-1.46, 95%CI=-2.72, -0.02). No association in light smokers was observed. No association for heart rate was observed. ^ Results from this dissertation suggest Mexico City's smoking ban has had a larger impact on ETS exposure. Ventilation or air extraction, mechanisms of ETS control suggested frequently by tobacco companies to avoid smoking bans were not associated with ETS exposure. This dissertation suggests ETS exposure could be linked to changes in blood pressure and to increased respiratory symptoms. Evidence derived from this dissertation points to the potential negative health effects of ETS exposure in restaurants and bars, and provides support for the development of total smoking bans in this economic sector. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Occupational exposures to organic solvents, specifically acetonitrile and methanol, have the potential to cause serious long-term health effects. In the laboratory, these solvents are used extensively in protocols involving the use of high performance liquid chromatography (HPLC). Operators of HPLC equipment may be potentially exposed to these organic solvents when local exhaust ventilation is not employed properly or is not available, which can be the case in many settings. The objective of this research was to characterize the various sites of vapor release in the HPLC process and then to determine the relative influence of a novel vapor recovery system on the overall exposure to laboratory personnel. The effectiveness of steps to reduce environmental solvent vapor concentrations was assessed by measuring exposure levels of acetonitrile and methanol before and after installation of the vapor recovery system. With respect to acetonitrile, the concentration was not statistically significant with p=0.938; moreover, exposure after the intervention was actually higher than prior to intervention. With respect to methanol, the concentration was not statistically significant with p=0.278. This indicates that the exposure to methanol after the intervention was not statistically significantly higher or lower than prior to intervention. Thus, installation of the vapor recovery device did not result in statistically significant reduction in exposures in the settings encountered, and acetonitrile actually increased significantly.^