2 resultados para oral anticoagulant response
em DigitalCommons@The Texas Medical Center
Resumo:
Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^
Resumo:
The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^