2 resultados para one-to-one computing
em DigitalCommons@The Texas Medical Center
Resumo:
Two studies among college students were conducted to evaluate appropriate measurement methods for etiological research on computing-related upper extremity musculoskeletal disorders (UEMSDs). ^ A cross-sectional study among 100 graduate students evaluated the utility of symptoms surveys (a VAS scale and 5-point Likert scale) compared with two UEMSD clinical classification systems (Gerr and Moore protocols). The two symptom measures were highly concordant (Lin's rho = 0.54; Spearman's r = 0.72); the two clinical protocols were moderately concordant (Cohen's kappa = 0.50). Sensitivity and specificity, endorsed by Youden's J statistic, did not reveal much agreement between the symptoms surveys and clinical examinations. It cannot be concluded self-report symptoms surveys can be used as surrogate for clinical examinations. ^ A pilot repeated measures study conducted among 30 undergraduate students evaluated computing exposure measurement methods. Key findings are: temporal variations in symptoms, the odds of experiencing symptoms increased with every hour of computer use (adjOR = 1.1, p < .10) and every stretch break taken (adjOR = 1.3, p < .10). When measuring posture using the Computer Use Checklist, a positive association with symptoms was observed (adjOR = 1.3, p < 0.10), while measuring posture using a modified Rapid Upper Limb Assessment produced unexpected and inconsistent associations. The findings were inconclusive in identifying an appropriate posture assessment or superior conceptualization of computer use exposure. ^ A cross-sectional study of 166 graduate students evaluated the comparability of graduate students to College Computing & Health surveys administered to undergraduate students. Fifty-five percent reported computing-related pain and functional limitations. Years of computer use in graduate school and number of years in school where weekly computer use was ≥ 10 hours were associated with pain within an hour of computing in logistic regression analyses. The findings are consistent with current literature on both undergraduate and graduate students. ^
Resumo:
Much has been written about the relation of social support to health outcomes. Support networks were found to be predictive of health status. Not so clear was the manner in which social support helped the individual to avoid health complications. Whereas some aspects of the support network were protective, others were burdensome. Duties to one's network could serve as a stressor and duties outside one's network might stress the support system itself. Exposure to one's network was associated with certain health risks while disruption in one's social support network was associated with other health risks.^ Many factors contributed to the impact of a social support network upon the individual member: the characteristics of the individual, the individual's role or position within the network, qualities of the network and duties or indebtedness of the individual to the network. This investigation considered the possibility that performance could serve as a stressor in a fashion similar to an exposure to a health hazard.^ Because the literature includes many examples of studies in which the subjects were college students, academic progress is a performance common to most subjects. A profile of the support networks of successful students was contrasted with those of less successful students in this correlational study.^ What was uncovered in this investigation was a very complex web of interrelated constructs. Most aspects of the social support network did not significantly predict academic performance. Only a limited number of characteristics were associated with academic success: the frequency of support, student age, the existence of a 'mentor' within one' s network, and the extent to which one received a predominant source of support. Other factors had a tendency to be negatively correlated with midterm grade, suggesting those factors may impede academic performance.^ Medical status did not predict grades, but was correlated with many aspects of the network. Disruptions in particular parts of one's network were correlated with particular health categories. In fact, disruption in social support was more predictive of academic outcomes than medical complications. Whereas the individual's values were related to the contributing factors, only the individual's satisfaction with certain aspects of the support network were predictive of higher midterm grades in a psychology class. Dissatisfaction was associated with lower grades, suggesting a disruptive effect within the network. Associations among the features of support networks which predicted academic progress were considered. ^