3 resultados para odometric correction.
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVES: To determine the prevalence of false or misleading statements in messages posted by internet cancer support groups and whether these statements were identified as false or misleading and corrected by other participants in subsequent postings. DESIGN: Analysis of content of postings. SETTING: Internet cancer support group Breast Cancer Mailing List. MAIN OUTCOME MEASURES: Number of false or misleading statements posted from 1 January to 23 April 2005 and whether these were identified and corrected by participants in subsequent postings. RESULTS: 10 of 4600 postings (0.22%) were found to be false or misleading. Of these, seven were identified as false or misleading by other participants and corrected within an average of four hours and 33 minutes (maximum, nine hours and nine minutes). CONCLUSIONS: Most posted information on breast cancer was accurate. Most false or misleading statements were rapidly corrected by participants in subsequent postings.
Resumo:
BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.
Resumo:
Analysis of the human genome has revealed that more than 74% of human genes undergo alternative RNA splicing. Aberrations in alternative RNA splicing have been associated with several human disorders, including cancer. ^ We studied the aberrant expression of alternative RNA splicing isoforms of the Fibroblast Growth Factor Receptor 1 (FGFR1) gene in a human glioblastoma cancer model. Normal glial cells express the FGFR1α, which contains three extracellular domains. In tumors the most abundant isoform is the FGFR1β, which lacks the first extracellular domain due to the skipping of a single exon, termed alpha. The skipping of the α-exon is regulated by two intronic silencing sequences within the precursor mRNA. Since we observed no mutations on these elements in tumor cells, we hypothesized that the over-expression of regulatory proteins that recognize these sequences is responsible for the aberrant expression of splicing isoforms. Hence, we blocked the formation of protein complexes on the ISS using antisense RNA oligonucleotides in vitro. We also evaluated the impact of the ISS antisense oligonucleotides on the endogenous FGFR1 splicing, in a glioblastoma cell model. By targeting intronic regulatory elements we were able to increase the level of alpha exon inclusion up to 90% in glioblastoma cells. The effect was dose dependent, sequence specific and reproducible in glioblastoma and other cancer cells, which also exhibit an alpha exon skipping phenotype. Targeting FGFR1 endogenous ISS1 and ISS2 sequences did not have an additive or synergistic effect, which suggest a regulatory splicing mechanism that requires the interaction of complexes formed on these elements. An increase in the levels of the FGFR1α isoform resulted in a reduction in cell invasiveness. Also, a significant increase in the levels of caspase 3/7 activities, which is indicative of an elevation in apoptosis levels, suggests that expression of FGFR1β might be relevant for tumor survival. These studies demonstrate that it is possible to prevent aberrant expression of exon skipping events through the targeting of intronic regulatory elements, providing an important new therapeutic tool for the correction of human disease caused by alternative RNA splicing. ^