18 resultados para non-standard lexical functions

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detector uniformity is a fundamental performance characteristic of all modern gamma camera systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images that are free of artifact. For these reasons, the assessment of detector uniformity is one of the most common activities associated with a successful clinical quality assurance program in gamma camera imaging. The evaluation of this parameter, however, is often unclear because it is highly dependent upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that do not characterize the spatial location of the non-uniformities. Furthermore, as the goal of any robust quality control program is the determination of significant deviations from standard or baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation (1). This thesis describes the development and testing of new methods for monitoring detector uniformity. These techniques provide more quantitative, sensitive, and specific feedback to the reviewer so that he or she may be better equipped to identify performance degradation prior to its manifestation in clinical images. The methods exploit the temporal nature of detector degradation and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition. These techniques were tested on synthetic phantom data using different degradation functions, as well as on experimentally acquired time series floods with induced, progressively worsening defects present within the field-of-view. The sensitivity of conventional, global figures-of-merit for detecting changes in uniformity was evaluated and compared to these new image-space techniques. The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity prior to any single flood image’s having a NEMA uniformity value in excess of 5%. The sensitivity of these image-space algorithms was found to depend on the size and magnitude of the non-uniformities, as well as on the nature of the cause of the non-uniform region. A trend analysis of the conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity. The image-space algorithms are computationally efficient. Therefore, the image-space algorithms should be used concomitantly with the trending of the global figures-of-merit in order to provide the reviewer with a richer assessment of gamma camera detector uniformity characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the availability of hepatitis B vaccine for over two decades, drug users and other high-risk adult populations have experienced low vaccine coverage. Poor compliance has limited efforts to reduce transmission of hepatitis B infection in this population. Evidence suggests that immunological response in drug users is impaired compared to the general population, both in terms of lower seroprotection rates and antibodies levels.^ The current study investigated the effectiveness of the multi-dose hepatitis B vaccine and compared the effect of the standard and accelerated vaccine schedules in a not-in-treatment, drug-using adult population in the city of Houston, USA.^ A population of drug-users from two communities in Houston, susceptible to hepatitis B, was sampled by outreach workers and referral methodology. Subjects were randomized either to the standard hepatitis vaccine schedule (0, 1-, 6-month) or to an accelerated schedule (0, 1-, 2-month). Antibody levels were detected through laboratory analyses at various time-points. The participants were followed for two years and seroconversion rates were calculated to determine immune response.^ A four percent difference in the overall compliance rate was observed between the standard (73%) and accelerated schedules (77%). Logistic regression analyses showed that drug users living on the streets were twice as likely to not complete all three vaccine doses (p=0.028), and current speedball use was also associated with non-completion (p=0.002). Completion of all three vaccinations in the multivariate analysis was also correlated with older age. Drug users on the accelerated schedule were 26% more likely to achieve completion, although this factor was marginally significant (p=0.085).^ Cumulative adequate protective response was gained by 65% of the HBV susceptible subgroup by 12-months and was identical for both the standard and accelerated schedules. Excess protective response (>=100 mIU/mL) occurred with greater frequency at the later period for the standard schedule (36% at 12-months compared to 14% at six months), while the greater proportion of excess protective response for the accelerated schedule occurred earlier (34% at 6 months compared to 18% at 12-months). Seroconversion at the adequate protective response level of 10 mIU/mL was reached by the accelerated schedule group at a quicker rate (62% vs. 49%), and with a higher mean titer (104.8 vs. 64.3 mIU/mL), when measured at six months. Multivariate analyses indicated a 63% increased risk of non-response for older age and confirmed the existence of an accelerating decline in immune response to vaccination manifesting after 40 years (p=0.001). Injecting more than daily was also highly associated with the risk of non-response (p=0.016).^ The substantial increase in the seroprotection rate at six months may be worth the trade-off against the faster antibody titer decrease and is recommended for enhancing compliance and seroconversion. Utilization of the accelerated schedule with the primary objective of increasing compliance and seroconversion rates during the six months after the first dose may confer early protective immunity and reduce the HBV vulnerability of drug users who continue, or have recently initiated, increased high risk drug use and sexual behaviors.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herbicides are used to control the growth of weeds along highways, power lines, and many other urban locations. Exposure to herbicides has been linked to adverse health outcomes. This study was initiated to pretest for the presence of herbicides in multiple water sources near intersections in a corridor in the Northwest Harris County (specifically in the Highway 6/FM 1960, North Freeway 45, US 290 and S 99 corridor). Roadside water and tap water samples were collected and analyzed for herbicides using the established Environmental Protection Agency (EPA) Method 515.4: "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Micro-extraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection." A standard operating procedure (adapted from the US EPA Method 515.4) was developed for subsequent, larger studies of environmental fate of herbicides and non-occupational exposure risks. Preliminary testing of 16 water samples was performed to pretest the existence of trace herbicides; all concentrations that were greater than the minimum reporting limits of each analyte are reported with a 99 percent confidence. This study failed to find concentrations above the limits of detection of the method in any of the samples collected on June 15, 2008. However, this does not indicate that the waters around the NW Harris County are free of herbicides and metabolites. A larger and repeated sampling in the region would be necessary to make that claim. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to examine, in the context of an economic model of health production, the relationship between inputs (health influencing activities) and fitness.^ Primary data were collected from 204 employees of a large insurance company at the time of their enrollment in an industrially-based health promotion program. The inputs of production included medical care use, exercise, smoking, drinking, eating, coronary disease history, and obesity. The variables of age, gender and education known to affect the production process were also examined. Two estimates of fitness were used; self-report and a physiologic estimate based on exercise treadmill performance. Ordinary least squares and two-stage least squares regression analyses were used to estimate the fitness production functions.^ In the production of self-reported fitness status the coefficients for the exercise, smoking, eating, and drinking production inputs, and the control variable of gender were statistically significant and possessed theoretically correct signs. In the production of physiologic fitness exercise, smoking and gender were statistically significant. Exercise and gender were theoretically consistent while smoking was not. Results are compared with previous analyses of health production. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the resulting lack of human genetic model system renders their functional studies difficult. In this study, I established isogenic human FANCM- and FAAP24-null mutants through homologous replacement-mediated gene targeting in HCT-116 cells, and systematically investigated the functions of FANCM and FAAP24 inchromosome stability, FA pathway activation, DNA damage checkpoint signaling, and ICL repair. I found that the FANCM-/-/FAAP24-/- double mutant was much more sensitive to DNA crosslinking agents than FANCM-/- and FAAP24-/- single mutants, suggesting that FANCM and FAAP24 possess epistatic as well as unique functions in response to ICL damage. I demonstrated that FANCM and FAAP24 coordinately support the activation of FA pathway by promoting chromatin localization of FA core complex and FANCD2 monoubiqutination. They also cooperatively function to suppress sister chromatid exchange and radial chromosome formation, likely by limiting crossovers in recombination repair. In addition, I defined novel non-overlapping functions of FANCM and FAAP24 in response to ICL damage. FAAP24 plays a major role in activating ICL-induced ATR-dependent checkpoint, which is independent of its interaction with FANCM. On the other hand, FANCM promotes recombination-independent ICL repair independently of FAAP24. Mechanistically, FANCM facilitates recruitment of nucleotide excision repair machinery and lesion bypass factors to ICL damage sites through its translocase activity. Collectively, my studies provide mechanistic insights into how genome integrity is both coordinately and independently protected by FANCM and FAAP24.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Receipt of early prenatal care, care during the first three months of pregnancy, is the standard in the United States. Sixty percent of non-Hispanic Black women who had a live birth in the Sunnyside community of Houston did not obtain early prenatal care in 2009. ^ This study's aims were to: 1) Describe the barriers to obtaining early prenatal care in non-Hispanic Black women who live in the Sunnyside community of Houston; and, 2) Describe the actions that could encourage non-Hispanic Black women who live in the Sunnyside Community to obtain early prenatal care. The goal was to provide information to organizations that promote early prenatal care use in non-Hispanic Black women in Harris County that may aid in developing interventions. ^ Methods: The Participatory Learning for Action rapid assessment qualitative method was used in a group setting to answer the research questions on behalf of women in the community. Women who participated in the group sessions also participated in an in-depth interview. Key informants who work in the community with pregnant women, or promote the use of prenatal care services, were also interviewed. An inductive analysis of the data was conducted to identify common themes that address the study's aims. ^ Results: Aim 1: Group participants identified fear of the reaction from family and/or the baby's daddy and shame, not having insurance or money, and lack of knowledge of the pregnancy and resources as the top three barriers to early prenatal care for women in the community. Aim 2: Group participants stated that to help women to overcome these barriers, communication, awareness and support; help, resources and services; and information and early education are needed. Participant in-depth interviewees echoed the themes of fear of the reaction from family and/or the baby's daddy and not knowing of the pregnancy. Key informants mentioned these themes as well, though not at the same priority level. Participants and key informants also mentioned similar themes for helping women to overcome barriers to early prenatal care. ^ Conclusion: A comprehensive approach is needed to improve early prenatal care use in the Sunnyside community. Education efforts must include all members of the community, young and old, to promote support for pregnant women. Community members must be a part of the process for developing education campaigns. Engaging the community builds a relationship with organizations that serve the community, which may promote use of the organizations' services, and build trust with the community. All efforts must be ongoing so that women and men of all ages in the community understand the importance of prenatal care and support women obtaining care early in the pregnancy.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prenatal diagnosis is traditionally made via invasive procedures such as amniocentesis and chorionic villus sampling (CVS). However, both procedures carry a risk of complications, including miscarriage. Many groups have spent years searching for a way to diagnose a chromosome aneuploidy without putting the fetus or the mother at risk for complications. Non-invasive prenatal testing (NIPT) for chromosome aneuploidy became commercially available in the fall of 2011, with detection rates similar to those of invasive procedures for the common autosomal aneuploidies (Palomaki et al., 2011; Ashoor et al. 2012; Bianchi et al. 2012). Eventually NIPT may become the diagnostic standard of care and reduce invasive procedure-related losses (Palomaki et al., 2011). The integration of NIPT into clinical practice has potential to revolutionize prenatal diagnosis; however, it also raises some crucial issues for practitioners. Now that the test is clinically available, no studies have looked at the physicians that will be ordering the testing or referring patients to practitioners who do. This study aimed to evaluate the attitudes of OB/GYN’s and how they are incorporating the test into clinical practice. Our study shows that most physicians are offering this new, non-invasive technology to their patients, and that their practices were congruent with the literature and available professional society opinions. Those physicians who do not offer NIPT to their patients would like more literature on the topic as well as instructive guidelines from their professional societies. Additionally, this study shows that the practices and attitudes of MFMs and OBs differ. Our population feels that the incorporation of NIPT will change their practices by lowering the amount of invasive procedures, possibly replacing maternal serum screening, and that it will simplify prenatal diagnosis. However, those physicians who do not offer NIPT to their patients are not quite sure how the test will affect their clinical practice. From this study we are able to glean how physicians are incorporating this new technology into their practice and how they feel about the addition to their repertoire of tests. This knowledge gives insight as to how to best move forward with the quickly changing field of prenatal diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was development of a method of estimating nutrient availability in populations as approximated by supermarket purchase records. Demographic information describing 12,516 panel households was obtained from a marketing and advertising program operated by H. E. Butt Grocery Company of San Antonio, Texas. A non-probability sample of 2,161 households meeting expenditure criteria was selected and all purchases of dairy products for this sample of households were organized into a database constructed to facilitate the retrieval, aggregation, and analysis of dairy product purchases and their nutrient contents. Two hypotheses were tested: (1) no difference would be found between Hispanic and non-Hispanic purchases of dairy product categories during the study period and (2) no difference would be found between Hispanic and non-Hispanic purchases of nutrients contained in those dairy products during the thirteen-week study period.^ Food purchase records were used to estimate nutrient exposure on a weekly, per capita basis for Hispanic and non-Hispanic households by linking some 40,000 dairy purchase Universal Product code (UPC) numbers with food composition values contained in USDA Handbook 8-1. Results of this study suggest Hispanic sample households consistently purchased fewer dairy products than did non-Hispanic sample households and consequently had fewer nutrients available from dairy purchases. While weekly expenditures for dairy products among the sample households remained relatively constant during the study period, shifts in the types of dairy products purchased were observed. The effect of ethnicity on dairy product and nutrient purchases was significant over the thirteen-week period. A database consisting of customer, household, and purchase information can be developed to successfully associate food item UPC numbers with a standard reference of food composition to estimate nutrient availability in a population over extended periods of time. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^