5 resultados para non-corresponding demonstrative forms

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many diseases associated with the expansion of DNA repeats in humans. Myotonic dystrophy type 2 is one of such diseases, characterized by expansions of a (CCTG)•(CAGG) repeat tract in intron 1 of zinc finger protein 9 (ZNF9) in chromosome 3q21.3. The DM2 repeat tract contains a flanking region 5' to the tract that consists of a polymorphic repetitive sequence (TG)14-25(TCTG)4-11(CCTG) n. The (CCTG)•(CAGG) repeat is typically 11-26 repeats in persons without the disease, but can expand up to 11,000 repeats in affected individuals, which is the largest expansion seen in DNA repeat diseases to date. This DNA tract remains one of the least characterized disease-associated DNA repeats, and mechanisms causing the repeat expansion in humans have yet to be elucidated. Alternative, non B-DNA structures formed by the expanded repeats are typical in DNA repeat expansion diseases. These sequences may promote instability of the repeat tracts. I determined that slipped strand structure formation occurs for (CCTG)•(CAGG) repeats at a length of 42 or more. In addition, Z-DNA structure forms in the flanking human sequence adjacent to the (CCTG)•(CAGG) repeat tract. I have also performed genetic assays in E. coli cells and results indicate that the (CCTG)•(CAGG) repeats are more similar to the highly unstable (CTG)•(CAG) repeat tracts seen in Huntington's disease and myotonic dystrophy type 1, than to those of the more stable (ATTCT)•(AGAAT) repeat tracts of spinocerebellar ataxia type 10. This instability, however, is RecA-independent in the (CCTG)•(CAGG) and (ATTCT)•(AGAAT) repeats, whereas the instability is RecA-dependent in the (CTG)•(CAG) repeats. Structural studies of the (CCTG)•(CAGG) repeat tract and the flanking sequence, as well as genetic selection assays may reveal the mechanisms responsible for the repeat instability in E. coli, and this may lead to a better understanding of the mechanisms contributing to the human disease state. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-catenin/Lef/Tcf-mediated Wnt pathway is central to the developmental of all animals, stem cell renewal, and cancer progression. Prior studies in frogs and mice have indicated that the ligand Wnt-4 is essential for the mesenchyme to epithelial transition that generates tubules in the context of kidney organogenesis. More recently, Wnt-9b in mice, was likewise found to be required. Yet despite the importance of Wnt signals in renal development, the corresponding Frizzled receptor(s) and downstream signaling mechanim(s) are unclear. My work addresses these knowledge gaps using in vitro (Madin-Darby Canine Kidney cells) and in vivo (Xenopus laevis and zebrafish pronephros) tubulogenic kidney model systems. Employing established reporter constructs of Wnt/β-catenin pathway activity, I have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions. I have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/β-catenin pathway using β-Engrailed and dnTCF-4, constructs that suppress this pathway. I have further found that MDCK cells express the Frizzled-6 receptor, and that Wnt-4 forms a biochemical complex with Frizzled-6, yet does not appear to transduce Wnt-4's canonical signal. Additionally, I demonstrate that standard Hepatocyte Growth Factor (HGF)-mediated (non-physiologic) induction of MDCK tubulogenesis in collagen matrices is not altered by activation or suppression of β-catenin signaling activity; however, β-catenin signaling maintains cell survival in this in vitro system. Using a Wnt/β-catenin signaling reporter in Xenopus laevis, I detect β-catenin signaling activity in the early pronephric epithelial kidney tubules. By inhibiting the Wnt/β-catenin signaling pathway in both zebrafish and Xenopus , a significant loss of kidney tubulogenesis is observed with little or no effect on adjoining axis or somite development. This inhibition also leads to the appearance of severe edema that phenocopies embryos depleted for Wnt-4. Tubulogenic loss does not appear to be caused by increased cell death in the Xenopus pronephric field, but rather by lessened expression of tubule epithelium genes associated with cellular differentiation. Together, my results show that Wnt/β-catenin signaling is required for renal tubule development and that Wnt-4 is a strong candidate for activating this pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus occurs in two forms, insulin-dependent (IDDM, formerly called juvenile type) and non-insulin dependent (NIDDM, formerly called adult type). Prevalence figures from around the world for NIDDM, show that all societies and all races are affected; although uncommon in some populations (.4%), it is common (10%) or very common (40%) in others (Tables 1 and 2).^ In Mexican-Americans in particular, the prevalence rates (7-10%) are intermediate to those in Caucasians (1-2%) and Amerindians (35%). Information about the distribution of the disease and identification of high risk groups for developing glucose intolerance or its vascular manifestations by the study of genetic markers will help to clarify and solve some of the problems from the public health and the genetic point of view.^ This research was designed to examine two general areas in relation to NIDDM. The first aims to determine the prevalence of polymorphic genetic markers in two groups distinguished by the presence or absence of diabetes and to observe if there are any genetic marker-disease association (univariate analysis using two by two tables and logistic regression to study the individual and joint effects of the different variables). The second deals with the effect of genetic differences on the variation in fasting plasma glucose and percent glycosylated hemoglobin (HbAl) (analysis of Covariance for each marker, using age and sex as covariates).^ The results from the first analysis were not statistically significant at the corrected p value of 0.003 given the number of tests that were performed. From the analysis of covariance of all the markers studied, only Duffy and Phosphoglucomutase were statistically significant but poor predictors, given that the amount they explain in terms of variation in glycosylated hemoglobin is very small.^ Trying to determine the polygenic component of chronic disease is not an easy task. This study confirms the fact that a larger and random or representative sample is needed to be able to detect differences in the prevalence of a marker for association studies and in the genetic contribution to the variation in glucose and glycosylated hemoglobin. The importance that ethnic homogeneity in the groups studied and standardization in the methodology will have on the results has been stressed. ^