4 resultados para nipple shield
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: There is a continuous debate regarding the best bottle nipple to be used to enhance the bottle-feeding performance of a preterm infant. Aim: To verify that feeding performance can be improved by using the bottle nipple with the physical characteristics that enhance infants' sucking skills. METHODS: Ten "healthy" VLBW infants (941+/-273 g) were recruited. Feeding performance was monitored at two time periods, when taking 1-2 and 6-8 oral feedings/d. At each time and within 24 h, performance was monitored using three different bottle nipples offered in a randomized order. Rate of milk transfer (ml/min) was the primary outcome measure. The sucking skills monitored comprised stage of sucking, suction amplitude, and duration of the generated negative intraoral suction pressure. RESULTS: At both times, infants demonstrated a similar rate of milk transfer among all three nipples. However, the stage of sucking, suction amplitude, and duration of the generated suction were significantly different between nipples at 1-2, but not 6-8 oral feedings/d.CONCLUSION: We did not identify a particular bottle nipple that enhanced bottle feeding in healthy VLBW infants. Based on the notion that afferent sensory feedback may allow infants to adapt to changing conditions, we speculate that infants can modify their sucking skills in order to maintain a rate of milk transfer that is appropriate with the level of suck-swallow-breathe coordination achieved at a particular time. Therefore, it is proposed that caretakers should be more concerned over monitoring the coordination of suck-swallow-breathe than over the selection of bottle nipples.
Resumo:
The proportional distribution of independent malignant tumors in the contralateral breast following treatment for breast cancer was investigated to assess the influence of scattered radiation as a cause of these tumors. In a population of 172 patients the proportion of contralateral tumors in each quadrant and the center (the nipple-areolar complex) was compared with the expected, or natural, distribution found in the general population, in the absence of radiation. The observed/expected ratio for contralateral tumors was 1.43 for the upper-inner quadrant; 0.97, lower-inner quadrant; 1.51, center; 0.76, upper-outer quadrant; and 0.64, lower-outer quadrant. In each quadrant, except the lower-inner, the observed/expected ratio differed from 1.00 with statistical significance at the 5% level (one-tail). The same analysis, stratified by age and menopausal status, showed a similar shift of tumors, with more than expected in the inner quadrants and center and less than expected in the outer quadrants, although the results did not show statistical significance at the 5% level for all strata. For each patient the mean absorbed radiation dose for each quadrant and center of the breast was estimated, based on measurements in a tissue-equivalent phantom. Among patients the doses ranged from 0.5 to 8 Gy; within individuals, doses to the inner quadrants typically were a factor of three times higher than doses to the outer quadrants. The results suggest that radiation may be a risk factor for contralateral breast tumors and warrants further investigation. ^
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^
Resumo:
Objective::Describe and understand regional differences and associated multilevel factors (patient, provider and regional) to inappropriate utilization of advance imaging tests in the privately insured population of Texas. Methods: We analyzed Blue Cross Blue Shield of Texas claims dataset to study the advance imaging utilization during 2008-2010 in the PPO/PPO+ plans. We used three of CMS "Hospital Outpatient Quality Reporting" imaging efficiency measures. These included ordering MRI for low back pain without prior conservative management (OP-8) and utilization of combined with and without contrast abdominal CT (OP-10) and thorax CT (OP-11). Means and variation by hospital referral regions (HRR) in Texas were measured and a multilevel logistic regression for being a provider with high values for any the three OP measures was used in the analysis. We also analyzed OP-8 at the individual level. A multilevel logistic regression was used to identify predictive factors for having an inappropriate MRI for low back pain. Results: Mean OP-8 for Texas providers was 37.89%, OP-10 was 29.94% and OP-11 was 9.24%. Variation was higher for CT measure. And certain HRRs were consistently above the mean. Hospital providers had higher odds of high OP-8 values (OP-8: OR, 1.34; CI, 1.12-1.60) but had smaller odds of having high OP-10 and OP-11 values (OP-10: OR, 0.15; CI, 0.12-0.18; OP-11: OR, 0.43; CI, 0.34-0.53). Providers with the highest volume of imaging studies performed, were less likely to have high OP-8 measures (OP-8: OR, 0.58; CI, 0.48-0.70) but more likely to perform combined thoracic CT scans (OP-11: OR, 1.62; CI, 1.34-1.95). Males had higher odds of inappropriate MRI (OR, 1.21; CI, 1.16-1.26). Pattern of care in the six months prior to the MRI event was significantly associated with having an inappropriate MRI. Conclusion::We identified a significant variation in advance imaging utilization across Texas. Type of facility was associated with measure performance, but the associations differ according to the type of study. Last, certain individual characteristics such as gender, age and pattern of care were found to be predictors of inappropriate MRIs.^