6 resultados para network-based intrusion detection system
em DigitalCommons@The Texas Medical Center
Resumo:
This study focuses on the impact of a clinic-based intervention program on the immunization status of limited-income urban children. The intervention program consisted of an information session for clinic health care providers and the placement of individualized immunization information labels on clinic notes at the time of each visit. The degree of impact of the intervention on immunization administration was ascertained through a comparison of two similar groups of infants born in the same months of the year immediately before (N = 201) and after (N = 203) the information session and initiation of the labeling system. The timeliness of administration of each diphtheria, pertussis, tetanus and trivalent oral polio vaccine (DPT/TOPV) in the first year series of three was compared pre- to postintervention. Significantly more third immunizations were given the postintervention subjects within ten days of the recommended time of application ( p = .0361). Life table analysis indicated that the probability of an infant's passing one year of age without the administration of the third immunization decreased for postintervention infants (p = .0515). The intervention was most successful in assuring administration of the series of immunizations in those infants who were seen by the health care provider for at least 50% of their first year visits. Results indicate that minor changes in the format of information given a relatively continuous provider can increase completion of immunization series in infants. ^
Resumo:
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. Many recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. The current study incorporated gene network information into gene-based analysis of GWAS data for Crohn's disease (CD). The purpose was to develop statistical models to boost the power of identifying disease-associated genes and gene subnetworks by maximizing the use of existing biological knowledge from multiple sources. The results revealed that Markov random field (MRF) based mixture model incorporating direct neighborhood information from a single gene network is not efficient in identifying CD-related genes based on the GWAS data. The incorporation of solely direct neighborhood information might lead to the low efficiency of these models. Alternative MRF models looking beyond direct neighboring information are necessary to be developed in the future for the purpose of this study.^
Resumo:
The genomic era brought by recent advances in the next-generation sequencing technology makes the genome-wide scans of natural selection a reality. Currently, almost all the statistical tests and analytical methods for identifying genes under selection was performed on the individual gene basis. Although these methods have the power of identifying gene subject to strong selection, they have limited power in discovering genes targeted by moderate or weak selection forces, which are crucial for understanding the molecular mechanisms of complex phenotypes and diseases. Recent availability and rapid completeness of many gene network and protein-protein interaction databases accompanying the genomic era open the avenues of exploring the possibility of enhancing the power of discovering genes under natural selection. The aim of the thesis is to explore and develop normal mixture model based methods for leveraging gene network information to enhance the power of natural selection target gene discovery. The results show that the developed statistical method, which combines the posterior log odds of the standard normal mixture model and the Guilt-By-Association score of the gene network in a naïve Bayes framework, has the power to discover moderate/weak selection gene which bridges the genes under strong selection and it helps our understanding the biology under complex diseases and related natural selection phenotypes.^
Resumo:
High-throughput assays, such as yeast two-hybrid system, have generated a huge amount of protein-protein interaction (PPI) data in the past decade. This tremendously increases the need for developing reliable methods to systematically and automatically suggest protein functions and relationships between them. With the available PPI data, it is now possible to study the functions and relationships in the context of a large-scale network. To data, several network-based schemes have been provided to effectively annotate protein functions on a large scale. However, due to those inherent noises in high-throughput data generation, new methods and algorithms should be developed to increase the reliability of functional annotations. Previous work in a yeast PPI network (Samanta and Liang, 2003) has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional associations between proteins, and hence suggest their functions. One advantage of the work is that their algorithm is not sensitive to noises (false positives) in high-throughput PPI data. In this study, we improved their prediction scheme by developing a new algorithm and new methods which we applied on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting functionally associated proteins. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as independent and unbiased benchmarks to evaluate our algorithms and methods within the human PPI network. We showed that, compared with the previous work from Samanta and Liang, our algorithm and methods developed in this study improved the overall quality of functional inferences for human proteins. By applying the algorithms to the human PPI network, we obtained 4,233 significant functional associations among 1,754 proteins. Further comparisons of their KEGG and GO annotations allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made pathway analysis to identify several subclusters that are highly enriched in certain signaling pathways. Particularly, we performed a detailed analysis on a subcluster enriched in the transforming growth factor β signaling pathway (P<10-50) which is important in cell proliferation and tumorigenesis. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotations in this post-genomic era.
Resumo:
MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^
Resumo:
This study assessed the perceptions of college students regarding the instructional quality of online and web based courses via a content management system. [See PDF for complete abstract]