8 resultados para myocardium
em DigitalCommons@The Texas Medical Center
Resumo:
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
The "lipotoxic footprint" of cardiac maladaptation in diet-induced obesity is poorly defined. We investigated how manipulation of dietary lipid and carbohydrate influenced potential lipotoxic species in the failing heart. In Wistar rats, contractile dysfunction develops at 48 weeks on a high-fat/high-carbohydrate "Western" diet, but not on low-fat/high-carbohydrate or high-fat diets. Cardiac content of the lipotoxic candidates--diacylglycerol, ceramide, lipid peroxide, and long-chain acyl-CoA species--was measured at different time points by high-performance liquid chromatography and biochemical assays, as was lipogenic capacity in the heart and liver by qRT-PCR and radiometric assays. Changes in membranes fluidity were also monitored using fluorescence polarization. We report that Western feeding induced a 40% decrease in myocardial palmitoleoyl-CoA content and a similar decrease in the unsaturated-to-saturated fatty acid ratio. These changes were associated with impaired cardiac mitochondrial membrane fluidity. At the same time, hepatic lipogenic capacity was increased in animals fed Western diet (+270% fatty acid elongase activity compared with high-fat diet), while fatty acid desaturase activity decreased over time. Our findings suggest that dysregulation of lipogenesis is a significant component of heart failure in diet-induced obesity.
Resumo:
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made.All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a 'dormant' or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).
Resumo:
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Resumo:
Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryotic signaling modules consisting of a MAPK, a MAPKK and a MAP3K. MAPK cascades are involved in many cellular responses including proliferation, differentiation, apoptosis, stress and immune responses. ^ The first part of this thesis describes the cloning and biochemical analysis of JNKK2, a member of MAPKK gene family. Our results demonstrate that JNKK2 is a specific JNK activator and activates the JNK-dependent signal transduction pathway in vivo by inducing c-Jun and ATF2-mediated gene expression. We also found that JNKK2 is specifically activated by a MAP3K MEKK2 through formation of MEKK2-JNKK2-JNK1 triple complex module. JNKK2 is likely to mediate specific upstream signals to activate JNK cascade. ^ The second part of this thesis describes biochemical and gene disruption analysis of MEKK3, a member of MAP3K gene family. We showed that overexpression of MEKK3 strongly activates both JNK and p38 MAPKs but only weakly activates ERK. MEKK−/− embryos die at about embryonic day (E) 11. MEKK3−/− embryos displayed defects in blood vessel development in the yolk sacs, and in the myocardium and endocardium development at E9.5. The angiogenesis in the head, intersomitic region and placenta was also abnormal. These results demonstrate that MEKK3, a member of MAP3K MEKK/STE11 subgene family, is essential for early embryonic cardiovascular development. Furthermore, it was found that disruption of MEKK3 did not alter the expression of vascular endothelial growth factor-1 (VEGF-1), angiopoietin-1, -2 and their respective receptors Flt-1, Flk-1, Tie-1, Tie-2. Finally, MEKK3 was shown to activate myocyte-specific enhancer factor 2C (MEF2C), a crucial transcription factor for early embryonic cardiovascular development through the p38 MAPK cascade, suggesting that MEF2C is one of the key targets of the MEEKK3 signaling pathway during early embryonic cardiovascular development. ^
Resumo:
The heart is the first organ to form in vertebrates during embryogenesis, and its circulatory function is essential to embryonic survival. Cardiac morphogenesis comprises a complex series of interactions involving cells from several embryonic origins. These cell-cell interactions are regulated temporally and spatially by programs of inductive signaling events, including BMP signaling transduced by Smads and left-right asymmetry signaling mediated by Pitx2. Disruptions of BMP signaling and left-right asymmetry signaling result in abnormal cardiac morphogenesis that causes congenital heart disease in humans. In this study, conventional and conditional gene targeting approaches were employed to dissect the functions of Smad8 and Smad1, intracellular BMP signaling transducers, and Pitx2, a direct target of left-right signaling, in cardiac development. We generated the Smad8mt mutant allele and the Smad8lacZ knock-in allele. Smad8 homozygous mutant mice were viable and fertile without obvious abnormalities. The Smad8lacZ knock-in allele showed that Smad8 was expressed in the myocardium of cardiac outflow tract and atrioventricular cushions. We did not find defects in these Smad8-expressing cardiac regions in Smad8mt/mt and Smad8lacZ/lacZ mutants, indicating that Smad8 is dispensable for cardiac development. Conditional knockout of Smad1 using the Nkx2.5Cre allele in cardiac mesoderm resulted in partial inactivation of Smad1 in the myocardium and complete deletion of Smad1 in the epicardium, and caused ventricular hypoplasia featured with a thinner compact zone, suggesting that Smad1 signaling in the epicardium is required for myocardial morphogenesis in ventricles. Previous data have shown that Pitx2 null mutants exhibit defects in the cardiac outflow tract, a region populated with cells from the cardiac mesoderm and the cardiac neural crest. We found that the cardiac neural crest normally populated into the outflow tract in Pitx2 null mutant. Moreover, specific deletion of Pitx2 in the neural crest resulted in normal heart formation. Deletion of Pitx2 in the cardiac mesoderm caused defective outflow tract, revealing that the function of Pitx2 in the cardiac outflow tract resides in splanchnic and branchial arch mesoderm, and is independent of cardiac neural crest cells. ^