9 resultados para myelin sheath

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in cocaine-dependent human subjects have shown differences in white matter on diffusion tensor imaging (DTI) compared with non-drug-using controls. It is not known whether the differences in fractional anisotropy (FA) seen on DTI in white matter regions of cocaine-dependent humans result from a pre-existing predilection for drug use or purely from cocaine abuse. To study the effect of cocaine on brain white matter, DTI was performed on 24 rats after continuous infusion of cocaine or saline for 4 weeks, followed by brain histology. Voxel-based morphometry analysis showed an 18% FA decrease in the splenium of the corpus callosum (CC) in cocaine-treated animals relative to saline controls. On histology, significant increase in neurofilament expression (125%) and decrease in myelin basic protein (40%) were observed in the same region in cocaine-treated animals. This study supports the hypothesis that chronic cocaine use alters white matter integrity in human CC. Unlike humans, where the FA in the genu differed between cocaine users and non-users, the splenium was affected in rats. These differences between rodent and human findings could be due to several factors that include differences in the brain structure and function between species and/or the dose, timing, and duration of cocaine administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKC$\alpha$ (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKC$\alpha$-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKC$\alpha$ has been shown to be isoform specific as it does not bind to PKC$\beta$II or PKC$\alpha$ in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKC$\alpha$ and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKC$\alpha$ requires the hinge and C-terminal domains of PKC$\alpha$. In vitro, PICK1 binds to PKC$\alpha$ and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKC$\alpha$-specific function at the level of the nuclear membrane. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several interactive parameters of protein-calorie malnutrition imposed during postnatal ontogeny on the myelination of rat brain wre investigated. Postnatal starvation depresses the rate of myelin protein synthesis to approximately the same extent in all major brain regions examined (cerebral cortex, cerebellum, striatum, hippocampus, hypothalamus, midbrain and medulla), indicating a relatively uniform reduction in myelination throughout the brain. Early starvation from birth through 8 days, as well as starvation occurring late, from 14 to 30 days, produced no lasting deficit in myelin accumulation. Starvation from birth through 14 days or from birth through 20 days produces lasting, significant myelin deficits in all brain regions when examined following ad libitum feeding to 60 days of age. These data, in combination with the metabolic studies of myelin synthesis, show that severe starvation occurring during the 2nd and 3rd weeks of postnatal life produces an immediate reduction in myelin synthesis, and that the subsequent deficit in myelin accumulation is irreversible by nutritional rehabilitation. With respect to the relative severity of nutritional restriction occurring during this "critical" interval of brain ontogeny, additional studies showed that mild undernourishment (producing less than 20 percent growth lag) produces no myelin deficit. There appears to be a threshold effect such that undernutrition producing a growth lag of between 20 to 30 percent first produces a measurable deficit. Increasingly severe regimens of nutritional restriction which produce approximately 30, 40 and 50 percent body weight lags result in initial myelin deficits of 25, 55 and 60 percent, respectively. Initial myelin deficits do not recover following nutritional rehabilitation, although myelin continues to increase in both normal and all undernourished populations. At the cellular level, severe postnatal nutritional restriction appears to depress both the initial synthesis of myelin precursor proteins (as demonstrated for proteolipid protein) as well as their subsequent assembly into myelin membrane. All of the findings of the present studies are consistent with a hypothetical model of undernutrition-induced brain hypomyelination in which the primary defect consists of a failure of oligodendroglia to myelinate a substantial percentage of axons, resulting in a greatly decreased ratio of myelinated to unmyelinated axons. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeting Histone deacetylases (HDAC) for the treatment of genetically complex soft tissue sarcoma Histone deactylase inhibitors (HDACi) are a new class of anticancer therapeutics; however, little is known about HDACi or the individual contribution of HDAC isoform activity in soft tissue sarcoma (STS). We investigated the potential efficacy of HDACi as monotherapy and in combination with chemotherapy in a panel of genetically complex STS. We found that HDACi combined with chemotherapy significantly induced anti-STS effects in vitro and in vivo. We then focused our study of HDACi in malignant peripheral nerve sheath tumor (MPNST), a subtype of highly aggressive, therapeutically resistant, and commonly fatal malignancies that occur in patients with neurofibromatosis type-1 (NF1) or sporadically. The therapeutic efficacy of HDACi was investigated in a panel of NF1-associated and sporadic MPNST cell lines. Our results demonstrate the NF1-assocaited cohort to be highly sensitive to HDACi while sporadic cell lines exhibited resistance. HDACi-induced productive autophagy was found to be a mode of resistance and inhibiting HDACi-induced autophagy significantly induced pro-apoptotic effects of HDACi in vitro and in vivo. HDACs are not a single enzyme consisting of 11 currently known isoforms. HDACis used in these studies inhibit a variety of these isoforms, namely class I HDACs which include HDAC1, 2, 3, and 8. Recently, HDAC8-specific inhibitors (HDAC8i) have been created and tested in various cancer cell lines. Lastly, the potential therapeutic efficacy of HDAC8i was investigated in human (NF1-associated and sporadic) and NF1-associated murine-derived MPNST. HDAC8i abrogated cell growth in human and murine-derived MPNST cells. Similar to the pattern noticed with pan-HDACis NF1-associated cells, especially murine-derived, were more sensitive to HDAC8i compared to human sporadic MPNST cell lines. S-phase arrest was observed in human and murine MPNST cells, independent of p53 mutational and NF1 status. HDAC8i induced apoptosis is all cell lines tested, with a more pronounced effects in human and murine-derived NF1-associated cells. Most importantly, HDAC8i abrogated murine-derived MPNST xenograft growth in vivo. Taken together, these findings support the evaluation of pan-HDACi and isoform-specific inhibitors as a novel therapy to treat MPNST, including in combination with autophagy blocking combination regimens in particular for patients with sporadic MPNST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^