2 resultados para muscarinic receptor

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this dissertation was to examine the hypothesis that (R)-nipecotic acid ethyl ester ((R)-NAEE) is a cholinergic agonist that is selective for a particular subclass (M$\sb1$ or M$\sb2$) of muscarinic receptors.^ Ligand binding studies indicated that like cholinergic agonists (R)-NAEE selectively interacts with rat heart (M$\sb2$) and brain (M$\sb1$) muscarinic binding sites. Physiological studies revealed that unlike cholinergic agonists (R)-NAEE stimulated only those responses coupled to M$\sb2$ muscarinic receptors (acid secretion, negative inotropic response, smooth muscle contraction). Moreover, in rat brain (R)-NAEE differentiated between M$\sb2$ receptors negatively coupled to adenylate cyclase activity and M$\sb1$ receptors mediating PI turnover, being a weak competitive antagonist at these latter sites. In isolated rat gastric mucosal cells (R)-NAEE also differentiated between two M$\sb2$ coupled responses where it potentiated acid secretion but could not stimulate PI turnover. Atropine, a selective antimuscarinic agent, competitively antagonized all agonist effects of (R)-NAEE.^ Unlike (R)-NAEE, the muscarinic agonist arecoline, which is structurally similar to (R)-NAEE, stimulates both M$\sb1$ and M$\sb2$ receptors. Structure activity studies revealed that saturation of the piperidine ring and the length of the ester side chain of (R)-NAEE are the most important determinants for both M$\sb2$ efficacy and selectivity.^ The results of this dissertation establish that (R)-NAEE is a cholinergic muscarinic receptor agonist that displays greater efficacy at M$\sb2$ than at M$\sb1$ receptors, being a weak antagonist at the M$\sb1$ site. With such selectivity, (R)-NAEE may be regarded as a prototype for a unique class of cholinergic muscarinic M$\sb2$ receptor agonists. Because of these unique properties, (R)-NAEE should be useful in the further characterization of muscarinic receptors, and could lead to the development of a new class of therapeutic agents. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^