5 resultados para multiple measurements

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow ablation, i.e., the complete sterilization of the active bone marrow, followed by bone marrow transplantation (BMT) is a comment treatment of hematological malignancies. The use of targeted bone-seeking radiopharmaceuticals to selectively deliver radiation to the adjacent bone marrow cavities while sparing normal tissues is a promising technique. Current radiopharmaceutical treatment planning methods do not properly compensate for the patient-specific variable distribution of radioactive material within the skeleton. To improve the current method of internal dosimetry, novel methods for measuring the radiopharmaceutical distribution within the skeleton were developed. 99mTc-MDP was proven as an adequate surrogate for measuring 166Ho-DOTMP skeletal uptake and biodistribution, allowing these measures to be obtained faster, safer, and with higher spatial resolution. This translates directly into better measurements of the radiation dose distribution within the bone marrow. The resulting bone marrow dose-volume histograms allow prediction of the patient disease response where conventional organ scale dosimetry failed. They indicate that complete remission is only achieved when greater than 90% of the bone marrow receives at least 30 Gy. ^ Comprehensive treatment planning requires combining target and non-target organ dosimetry. Organs in the urinary tract were of special concern. The kidney dose is primarily dependent upon the mean transit time of 166 Ho-DOTMP through the kidney. Deconvolution analysis of renograms predicted a mean transit time of 2.6 minutes for 166Ho-DOTMP. The radiation dose to the urinary bladder wall is dependent upon numerous factors including patient hydration and void schedule. For beta-emitting isotopes such as 166Ho, reduction of the bladder wall dose is best accomplished through good patient hydration and ensuring a partially full bladder at the time of injection. Encouraging the patient to void frequently, or catheterizing the patient without irrigation, will not significantly reduce the bladder wall dose. ^ The results from this work will produce the most advanced treatment planning methodology for bone marrow ablation therapy using radioisotopes currently available. Treatments can be tailored specifically for each patient, including the addition of concomitant total body irradiation for patients with unfavorable dose distributions, to deliver a desired patient disease response, while minimizing the dose or toxicity to non-target organs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Despite tremendous strides in HIV treatment over the past decade, resistance remains a major problem. A growing number of patients develop resistance and require new therapies to suppress viral replication. ^ Objective: To assess the safety of multiple administrations of the anti-CD4 receptor (anti-CD4) monoclonal antibody ibalizumab given as intravenous (IV) infusions, in three dosage regimens, in subjects infected with human immunodeficiency virus (HIV-1). ^ Design: Phase 1, multi-center, open-label, randomized clinical trial comparing the safety, pharmacokinetics and antiviral activity of three dosages of ibalizumab. ^ Setting: Six clinical trial sites in the United States. ^ Participants: A total of twenty-two HIV-positive patients on no anti-retroviral therapy or a stable failing regimen. ^ Intervention: Randomized to one of two treatment groups in Arms A and B followed by non-randomized enrollment in Arm C. Patients randomized to Arm A received 10 mg/kg of ibalizumab every 7 days, for a total of 10 doses; patients randomized to Arm B received a total of six doses of ibalizumab; a single loading dose of 10 mg/kg on Day 1 followed by five maintenance doses of 6 mg/kg every 14 days, starting at Week 1. Patients assigned to Arm C received 25 mg/kg of ibalizumab every 14 days for a total of 5 doses. All patients were followed for safety for an additional 7 to 8 weeks. ^ Main Outcome Measures: Clinical and laboratory assessments of safety and tolerability of multiple administrations of ibalizumab in HIV-infected patients. Secondary measures of efficacy include HIV-1 RNA (viral load) measurements. ^ Results: 21 patients were treatment-experienced and 1 was naïve to HIV therapy. Six patients were failing despite therapy and 15 were on no current HIV treatment. Mean baseline viral load (4.78 log 10; range 3.7-5.9) and CD4+ cell counts (332/μL; range 89-494) were similar across cohorts. Mean peak decreases in viral load from baseline of 0.99 log10(1.11 log10, and 0.96 log 10 occurred by Wk 2 in Cohorts A, B and C, respectively. Viral loads decreased by >1.0 log10 in 64%; 4 patients viral loads were suppressed to < 400 copies/mL. Viral loads returned towards baseline by Week 9 with reduced susceptibility to ibalizumab. CD4+ cell counts rose transiently and returned toward baseline. Maximum median elevations above BL in CD4+ cell counts for Cohorts A, B and C were +257, +198 and +103 cells/μL, respectively and occurred within 3 Wks in 16 of 22 subjects. The half-life of ibalizumab was 3-3.5 days and elimination was characteristic of capacity-limited kinetics. Administration of ibalizumab was well tolerated. Four serious adverse events were reported during the study. None of these events were related to study drug. Headache, nausea and cough were the most frequently reported treatment emergent adverse events and there were no laboratory abnormalities related to study drug. ^ Conclusions: Ibalizumab administered either weekly or bi-weekly was safe, well tolerated, and demonstrated antiviral activity. Further studies with ibalizumab in combination with standard antiretroviral treatments are warranted.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal principal components analyses on a combination of four subcutaneous skinfolds (biceps, triceps, subscapular and suprailiac) were performed using data from the London Longitudinal Growth Study. The main objectives were to discover at what age during growth sex differences in body fat distribution occur and to see if there is continuity in body fatness and body fat distribution from childhood into the adult status (18 years). The analyses were done for four age sectors (3mon-3yrs, 3yrs-8yrs, 8yrs-18yrs and 3yrs-18yrs). Longitudinal principal component one (LPC1) for each age interval in both sexes represents the population mean fat curve. Component two (LPC2) is a velocity of fatness component. Component three (LPC3) in the 3mon-3yrs age sector represents infant fat wave in both sexes. In the next two age sectors component three in males represents peaks and shifts in fat growth (change in velocity), while in females it represents body fat distribution. Component four (LPC4) in the same two age sectors is a reversal in the sexes of the patterns seen for component three, i.e., in males it is body fat distribution and in females velocity shifts. Components five and above represent more complicated patterns of change (multiple increases and decreases across the age interval). In both sexes there is strong tracking in fatness from middle childhood to adolescence. In males only there is also a low to moderate tracking of infant fat with middle to late childhood fat. These data are strongly supported in the literature. Several factors are known to predict adult fatness among the most important being previous levels of fatness (at earlier ages) and the age at rebound. In addition we found that the velocity of fat change in middle childhood was highly predictive of later fatness (r $\approx -$0.7), even more so than age at rebound (r $\approx -$0.5). In contrast to fatness (LPC1), body fat distribution (LPC3-LPC4) did not track well even though significant components of body fat distribution occur at each age. Tracking of body fat distribution was higher in females than males. Sex differences in body fat distribution are non existent. Some sex differences are evident with the peripheral-to-central ratios after age 14 years. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).