24 resultados para multiple linear regression models

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p < .001). Children without prescriptions weighed less at baseline than children in the general population (p < .001) but gained height and weight at a faster rate (p < .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The mechanisms underlying the relationship between depression and acute coronary syndrome (ACS) remain unclear. Platelet serotonin has been associated with both depression and coronary artery disease in stable outpatients. Understanding the association between depression and platelet serotonin, during ACS, may explain some of the acute cardiovascular events seen in some individuals with depression. ^ Objectives: This study was designed to evaluate whether levels of platelet serotonin, during ACS, differ between individuals who screen positive for depression and individuals who screen negative for depression and to determine if a dose-response relationship exists between depressive symptoms and platelet serotonin levels. ^ Methods: In this cross-sectional study, data was collected on 51 patients hospitalized for ACS. Multiple linear regression models were used to determine if a relationship exists between depression and platelet serotonin levels. ^ Results: Of the 51 ACS patients, 24 screened positive for depression and 27 screened negative for depression. Platelet serotonin levels were not significantly different between the depressed group (942.10 ± 461.3) and the non-depressed group (1192.41 ± 764.3) (p= .293 and β= -4.093) and a dose-response relationship between depressive symptoms and platelet serotonin levels was not found (p= .250 and β= -.254). ^ Discussion: In this study, a relationship between depression and platelet serotonin levels was not found. Future research should focus on gaining a better understanding of the variables that may influence platelet serotonin levels in the ACS population. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aim was to determine whether using automated side loader (ASL) trucks in higher proportions compared to other types of trucks for residential waste collection results in lower injury rates (from all causes). The primary hypothesis was that the risk of injury to workers was lower for those who work with ASL trucks than for workers who work with other types of trucks used in residential waste collection. To test this hypothesis, data were collected from one of the nation’s largest companies in the solid waste management industry. Different local operating units (i.e. facilities) in the company used different types of trucks to varying degrees, which created a special opportunity to examine refuse collection injuries and illnesses and the risk reduction potential of ASL trucks.^ The study design was ecological and analyzed end-of-year data provided by the company for calendar year 2007. During 2007, there were a total of 345 facilities which provided residential services. Each facility represented one observation.^ The dependent variable – injury and illness rate, was defined as a facility’s total case incidence rate (TCIR) recorded in accordance with federal OSHA requirements for the year 2007. The TCIR is the rate of total recordable injury and illness cases per 100 full-time workers. The independent variable, percent of ASL trucks, was calculated by dividing the number of ASL trucks by the total number of residential trucks at each facility.^ Multiple linear regression models were estimated for the impact of the percent of ASL trucks on TCIR per facility. Adjusted analyses included three covariates: median number of hours worked per week for residential workers; median number of months of work experience for residential workers; and median age of residential workers. All analyses were performed with the statistical software, Stata IC (version 11.0).^ The analyses included three approaches to classifying exposure, percent of ASL trucks. The first approach included two levels of exposure: (1) 0% and (2) >0 - <100%. The second approach included three levels of exposure: (1) 0%, (2) ≥ 1 - < 100%, and (3) 100%. The third approach included six levels of exposure to improve detection of a dose-response relationship: (1) 0%, (2) 1 to <25%, (3) 25 to <50%, (4) 50 to <75%, (5) 75 to <100%, and (6) 100%. None of the relationships between injury and illness rate and percent ASL trucks exposure levels was statistically significant (i.e., p<0.05), even after adjustment for all three covariates.^ In summary, the present study shows that there is some risk reduction impact of ASL trucks but not statistically significant. The covariates demonstrated a varied yet more modest impact on the injury and illness rate but again, none of the relationships between injury and illness rate and the covariates were statistically significant (i.e., p<0.05). However, as an ecological study, the present study also has the limitations inherent in such designs and warrants replication in an individual level cohort design. Any stronger conclusions are not suggested.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ordinal logistic regression models are used to analyze the dependant variable with multiple outcomes that can be ranked, but have been underutilized. In this study, we describe four logistic regression models for analyzing the ordinal response variable. ^ In this methodological study, the four regression models are proposed. The first model uses the multinomial logistic model. The second is adjacent-category logit model. The third is the proportional odds model and the fourth model is the continuation-ratio model. We illustrate and compare the fit of these models using data from the survey designed by the University of Texas, School of Public Health research project PCCaSO (Promoting Colon Cancer Screening in people 50 and Over), to study the patient’s confidence in the completion colorectal cancer screening (CRCS). ^ The purpose of this study is two fold: first, to provide a synthesized review of models for analyzing data with ordinal response, and second, to evaluate their usefulness in epidemiological research, with particular emphasis on model formulation, interpretation of model coefficients, and their implications. Four ordinal logistic models that are used in this study include (1) Multinomial logistic model, (2) Adjacent-category logistic model [9], (3) Continuation-ratio logistic model [10], (4) Proportional logistic model [11]. We recommend that the analyst performs (1) goodness-of-fit tests, (2) sensitivity analysis by fitting and comparing different models.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation develops and explores the methodology for the use of cubic spline functions in assessing time-by-covariate interactions in Cox proportional hazards regression models. These interactions indicate violations of the proportional hazards assumption of the Cox model. Use of cubic spline functions allows for the investigation of the shape of a possible covariate time-dependence without having to specify a particular functional form. Cubic spline functions yield both a graphical method and a formal test for the proportional hazards assumption as well as a test of the nonlinearity of the time-by-covariate interaction. Five existing methods for assessing violations of the proportional hazards assumption are reviewed and applied along with cubic splines to three well known two-sample datasets. An additional dataset with three covariates is used to explore the use of cubic spline functions in a more general setting. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second-generation antipsychotics (SGAs) are increasingly prescribed to treat psychiatric symptoms in pediatric patients infected with HIV. We examined the relationship between prescribed SGAs and physical growth in a cohort of youth with perinatally acquired HIV-1 infection. Pediatric AIDS Clinical Trials Group (PACTG), Protocol 219C (P219C), a multicenter, longitudinal observational study of children and adolescents perinatally exposed to HIV, was conducted from September 2000 until May 2007. The analysis included P219C participants who were perinatally HIV-infected, 3-18 years old, prescribed first SGA for at least 1 month, and had available baseline data prior to starting first SGA. Each participant prescribed an SGA was matched (based on gender, age, Tanner stage, baseline body mass index [BMI] z score) with 1-3 controls without antipsychotic prescriptions. The main outcomes were short-term (approximately 6 months) and long-term (approximately 2 years) changes in BMI z scores from baseline. There were 236 participants in the short-term and 198 in the long-term analysis. In linear regression models, youth with SGA prescriptions had increased BMI z scores relative to youth without antipsychotic prescriptions, for all SGAs (short-term increase = 0.192, p = 0.003; long-term increase = 0.350, p < 0.001), and for risperidone alone (short-term = 0.239, p = 0.002; long-term = 0.360, p = 0.001). Participants receiving both protease inhibitors (PIs) and SGAs showed especially large increases. These findings suggest that growth should be carefully monitored in youth with perinatally acquired HIV who are prescribed SGAs. Future research should investigate the interaction between PIs and SGAs in children and adolescents with perinatally acquired HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation was written in the format of three journal articles. Paper 1 examined the influence of change and fluctuation in body mass index (BMI) over an eleven-year period, on changes in serum lipid levels (total, HDL, and LDL cholesterol, triglyceride) in a population of Mexican Americans with type 2 diabetes. Linear regression models containing initial lipid value, BMI and age, BMI change (slope of BMI), and BMI fluctuation (root mean square error) were used to investigate associations of these variables with change in lipids over time. Increasing BMI over time was associated with gains in total and LDL cholesterol and triglyceride levels in women. Fluctuation of BMI was not associated with detrimental lipid profiles. These effects were independent of age and were not statistically significant in men. In Mexican-American women with type 2 diabetes, weight reduction is likely to result in more favorable levels of total and LDL cholesterol and triglyceride, without concern for possible detrimental effects of weight fluctuation. Weight reduction may not be as effective in men, but does not appear to be harmful either. ^ Paper 2 examined the associations of upper and total body fat with total cholesterol, HDL and LDL cholesterol, and triglyceride levels in the same population. Multilevel analysis was used to predict serum lipid levels from total body fat (BMI and triceps skinfold) and upper body fat (subscapular skinfold), while controlling for the effects of sex, age and self-correlations across time. Body fat was not strikingly associated with trends in serum lipid levels. However, upper body fat was strongly associated with triglyceride levels. This suggests that loss of upper body fat may be more important than weight loss in management of the hypertriglyceridemia commonly seen in type 2 diabetes. ^ Paper 3 was a review of the literature reporting associations between weight fluctuation and lipid levels. Few studies have reported associations between weight fluctuation and total, LDL, and HDL cholesterol and triglyceride levels. The body of evidence to date suggests that weight fluctuation does not strongly influence levels of total, LDL and HDL cholesterol and triglyceride. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical activity has been, and remains, a significant public health issue. Thus, increasing physical activity has been identified as a top priority according to Healthy People 2010. Various behavioral variables have been associated with participation in physical activity, including the Type A behavior pattern (TABP). This study was a secondary data analysis of the Women On The Move pilot study data and examined the relationship between Type A behavior with physical activity. The study population consisted of fifty-six (56) adult minority women 40 years of age and above. The Thurstone Activity Scale was adapted for use in this study to measure TABP. Physical activity behavior was measured using an accelerometer (Computer Science Application, [CSA]) and a physical activity diary. All study questions were examined using multiple linear regression analysis. In all analyses age, household income, and level of education were entered as covariates. The results found no association with TABP and exercise or physical activity. More research involving a larger, more active study population is recommended in order to more precisely determine the relationship of TABP and physical activity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the United States, “binge” drinking among college students is an emerging public health concern due to the significant physical and psychological effects on young adults. The focus is on identifying interventions that can help decrease high-risk drinking behavior among this group of drinkers. One such intervention is Motivational interviewing (MI), a client-centered therapy that aims at resolving client ambivalence by developing discrepancy and engaging the client in change talk. Of late, there is a growing interest in determining the active ingredients that influence the alliance between the therapist and the client. This study is a secondary analysis of the data obtained from the Southern Methodist Alcohol Research Trial (SMART) project, a dismantling trial of MI and feedback among heavy drinking college students. The present project examines the relationship between therapist and client language in MI sessions on a sample of “binge” drinking college students. Of the 126 SMART tapes, 30 tapes (‘MI with feedback’ group = 15, ‘MI only’ group = 15) were randomly selected for this study. MISC 2.1, a mutually exclusive and exhaustive coding system, was used to code the audio/videotaped MI sessions. Therapist and client language were analyzed for communication characteristics. Overall, therapists adopted a MI consistent style and clients were found to engage in change talk. Counselor acceptance, empathy, spirit, and complex reflections were all significantly related to client change talk (p-values ranged from 0.001 to 0.047). Additionally, therapist ‘advice without permission’ and MI Inconsistent therapist behaviors were strongly correlated with client sustain talk (p-values ranged from 0.006 to 0.048). Simple linear regression models showed a significant correlation between MI consistent (MICO) therapist language (independent variable) and change talk (dependent variable) and MI inconsistent (MIIN) therapist language (independent variable) and sustain talk (dependent variable). The study has several limitations such as small sample size, self-selection bias, poor inter-rater reliability for the global scales and the lack of a temporal measure of therapist and client language. Future studies might consider a larger sample size to obtain more statistical power. In addition the correlation between therapist language, client language and drinking outcome needs to be explored.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a nested case-control study to determine the significant risk factors for developing encephalitis from West Nile virus (WNV) infection. The purpose of this research project was to expand the previously published Houston study of 2002–2004 patients to include data on Houston patients from four additional years (2005–2008) to determine if there were any differences in risk factors shown to be associated with developing the more severe outcomes of WNV infection, encephalitis and death, by having this larger sample size. A re-analysis of the risk factors for encephalitis and death was conducted on all of the patients from 2002–2008 and was the focus of this proposed research. This analysis allowed for the determination to be made that there are differences in the outcome in the risk factors for encephalitis and death with an increased sample size. Retrospective medical chart reviews were completed for the 265 confirmed WNV hospitalized patients; 153 patients had encephalitis (WNE), 112 had either viral syndrome with fever (WNF) or meningitis (WNM); a total of 22 patients died. Univariate logistic regression analyses on demographic, comorbidities, and social risk factors was conducted in a similar manner as in the previously conducted study to determine the risk factors for developing encephalitis from WNV. A multivariate model was developed by using model building strategies for the multivariate logistic regression analysis. The hypothesis of this study was that there would be additional risk factors shown to be significant with the increase in sample size of the dataset. This analysis with a greater sample size and increased power supports the hypothesis in that there were additional risk factors shown to be statistically associated with the more severe outcomes of WNV infection (WNE or death). Based on univariate logistic regression results, these data showed that even though age of 20–44 years was statistically significant as a protecting effect for developing WNE in the original study, the expanded sample lacked significance. This study showed a significant WNE risk factor to be chronic alcohol abuse, when it was not significant in the original analysis. Other WNE risk factors identified in this analysis that showed to be significant but were not significant in the original analysis were cancer not in remission > 5 years, history of stroke, and chronic renal disease. When comparing the two analyses with death as an outcome, two risk factors that were shown to be significant in the original analysis but not in the expanded dataset analysis were diabetes mellitus and immunosuppression. Three risk factors shown to be significant in this expanded analysis but were not significant in the original study were illicit drug use, heroin or opiate use, and injection drug use. However, with the multiple logistic regression models, the same independent risk factors for developing encephalitis of age and history of hypertension including drug induced hypertension were consistent in both studies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) and phthalates are chemicals of concern because of high levels measured in people and the environment as well as the demonstrated toxicity in animal studies and limited epidemiological studies. Exposure to these chemicals has been associated with a range of toxicological outcomes, including developmental effects, behavioral changes, endocrine disruption, effects on sexual health, and cancer. Previous research has shown that both of these classes of chemicals contaminate food in the United States and worldwide. However, how large a role diet plays in exposure to these chemicals is currently unknown. To address this question, an exploratory analysis of data collected as part of the 2003-04 National Health and Nutrition Examination Survey (NHANES) was conducted. Associations between dietary intake (assessed by 24-hour dietary recalls) for a range of food types (meat, poultry, fish, and dairy) and levels PBDEs and phthalate metabolites were analyzed using multiple linear regression modeling. Levels of individual PBDE congeners 28, 47, 99, 100 as well as total PBDEs were found to be significantly associated with the consumption of poultry. Metabolites of di-(2-ethylhexyl) phthalate (DEHP) were found to be associated with the consumption of poultry, as well as with an increased consumption of fat of animal origin. These results, combined with results from previous studies, suggest that diet is an important route of intake for both PBDEs and phthalates. Further research needs to be conducted to determine the sources of food contamination with these toxic chemicals as well as to describe the levels of contamination of US food in a large, representative sample.^