4 resultados para multimodal text
em DigitalCommons@The Texas Medical Center
Resumo:
In a challenging case of carotid occlusion with slowly evolving stroke, we used brain imaging to facilitate endovascular revascularization resulting in the relief of the patient's symptoms. Patients with carotid occlusion and continued neurological worsening or fluctuations present enormous treatment challenges. These patients may present "slow" strokes with subacute infarcts that present significant challenges and risks during attempts at revascularization of the occluded artery. We present such a case in which we used multimodal imaging techniques, including MR-perfusion, to facilitate endovascular revascularization. Our approach of delayed but cautious intra-arterial thrombolytic therapy, guided by brain imaging, and followed by stent placement across the residual stenosis, enabled revascularization of the occluded artery without overt in-hospital complications.
Resumo:
I studied the apolipoprotein (apo) B 3$\sp\prime$ variable number tandem repeat (VNTR) and did computer simulations of the stepwise mutation model to address four questions: (1) How did the apo B VNTR originate? (2) What is the mutational mechanism of repeat number change at the apo B VNTR? (3) To what extent are population and molecular level events responsible for the determination of the contemporary apo B allele frequency distribution? (4) Can VNTR allele frequency distributions be explained by a simple and conservative mutation-drift model? I used three general approaches to address these questions: (1) I characterized the apo B VNTR region in non-human primate species; (2) I constructed haplotypes of polymorphic markers flanking the apo B VNTR in a sample of individuals from Lorrain, France and studied the associations between the flanking-marker haplotypes and apo B VNTR size; (3) I did computer simulations of the one-step stepwise mutation model and compared the results to real data in terms of four allele frequency distribution characteristics.^ The results of this work have allowed me to conclude that the apo B VNTR originated after an initial duplication of a sequence which is still present as a single copy sequence in New World monkey species. I conclude that this locus did not originate by the transposition of an array of repeats from somewhere else in the genome. It is unlikely that recombination is the primary mutational mechanism. Furthermore, the clustered nature of these associations implicates a stepwise mutational mechanism. From the high frequencies of certain haplotype-allele size combinations, it is evident that population level events have also been important in the determination of the apo B VNTR allele frequency distribution. Results from computer simulations of the one-step stepwise mutation model have allowed me to conclude that bimodal and multimodal allele frequency distributions are not unexpected at loci evolving via stepwise mutation mechanisms. Short tandem repeat loci fit the stepwise mutation model best, followed by microsatellite loci. I therefore conclude that there are differences in the mutational mechanisms of VNTR loci as classed by repeat unit size. (Abstract shortened by UMI.) ^