3 resultados para movement sequence from sitting to standing

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a name given to a group of inherited retinal dystrophies that lead to progressive photoreceptor degeneration, and thus, visual impairment. It is evident at both the clinical and the molecular level that these are heterogeneous disorders, with wide variation in severity, mode of inheritance, and phenotype. The genetics of RP are not simple; the disease can be inherited in dominant, recessive, X-linked, and digenic modes. Autosomal dominant RP (adRP) results from mutations in at least ten mapped loci, but there may be dozens of genetic loci where mutations can cause RP. To date, there are over a hundred genes known to cause retinal degenerative diseases, and less than half of these have been cloned (RetNet). Among the dozens of retinitis pigmentosa loci known to exist, only a few have been identified and the remainders are inferred from linkage studies. Today, the genes for seven of the twelve-adRP loci have been identified, and these are rhodopsin, peripherin/RDS, NRL, ROM1, CRX, RP13 and RP1. My research projects involved a combination of the continued search for genes involved in retinal dystrophies, as well the investigation into the role of peripherin/RDS and RP1 in the disease etiology of autosomal dominant RP. ^ Most of the mutations leading to inherited retinal disorders have been identified in predominately retina expressed genes like rhodopsin, peripherin/RDS, and RP1. Expressed sequence tags (ESTs) that were retina-specific were culled from sequence databases and, together with laboratory analysis, were analyzed as potential candidate genes for retinal dystrophies. Thirteen of the fifty-five identified retina-specific ESTs mapped to within candidate regions for inherited retinopathies. One of these is RP1L1, a homologue of RP1 and a potential cause of adRP. ^ Once a disease-associated gene has been identified, elucidating the role of that gene in the visual process is essential for understanding what happens when the process is defective as it is in adRP. My next projects involved investigating the role of a novel 5′ donor +3 splice site mutation on the mRNA of peripherin/RDS in adRP affected individuals, and comparative sequencing in RP1 to define conserved regions of the protein. Comparative sequencing is a powerful way to delineate critical regions of a sequence because different regions of a gene have different functions, and each region is subject to different levels of functional or structural constraints. Establishing a framework of conserved domains is beneficial not only for structural or functional studies, but can also aid in determining the potential effects of mutations. With the completion of sequencing of human genome, and other organisms such as Saccharomyces cerevisiae, Caenorhabditis elegans , and Drosophila, the facility of comparative sequencing will only increase in the future. Comparative sequencing has already become an established procedure for pinpointing conserved regions of a protein, and is an efficient way to target regions of a protein for experimental and/or evolutionary analysis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infant mortality as a problematic situation has been recognized for some 130 years in one form or another. It has undergone various changes in its empirical dimensions relative to whom we study within the population, what we study--low birth-weight vs. pre-term births--and how we study it--whether demographically or medically. An analysis of the process by which the condition was raised by claims makers as an intolerable situation among America's urban residents reveals that demographic and medical data were sparse. Nonetheless, a judgement about the meaning and significance of the condition was made, and that interpretation led to the promulgation of systems to both document and address the condition as it has come to be defined.^ This investigation depicts the historical context and natural history of infant mortality as one of a number of social problems that came to be defined through the interplay among groups and individuals making claims and how their claims came to the public policy agenda as worthy of collective resources--who won, who lost and why. The process of social definition focuses attention on the claims makers and the ways they contrast the meaning, origins and remedies for this troubling condition. The historical context becomes the frame of reference for understanding the actions of the claims makers and the meaning and significance they attached to the problem.^ We purport that "context" provides a closer reality than disjoined "value free" accounts. Context provides the evidence for the definition, who participated in the process, why and by what means.^ The role of women in the definitional process reveals the differences in approaches utilized by the women of the settlement house reform movement and African-American women working at the grass-roots. Much of the work done by these two groups provided options to the problem's remedy; however, their differences paved the way to our current (principally medically-oriented) definition and its inherent limitations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.