2 resultados para morphological and anatomical studies
em DigitalCommons@The Texas Medical Center
Resumo:
Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.
Resumo:
OBJECTIVE: To relate volumetric magnetic resonance imaging (MRI) findings to hypothermia therapy and neurosensory impairments. STUDY DESIGN: Newborns > or =36 weeks' gestation with hypoxic-ischemic encephalopathy who participated in the National Institute of Child Health and Human Development hypothermia randomized trial at our center were eligible. We determined the relationship between hypothermia treatment and usual care (control) to absolute and relative cerebral tissue volumes. Furthermore, we correlated brain volumes with death or neurosensory impairments at 18 to 22 months. RESULT: Both treatment groups were comparable before randomization. Total brain tissue volumes did not differ in relation to treatment assignment. However, relative volumes of subcortical white matter were significantly larger in hypothermia-treated than control infants. Furthermore, relative total brain volumes correlated significantly with death or neurosensory impairments. Relative volumes of the cortical gray and subcortical white matter also correlated significantly with Bayley Scales psychomotor development index. CONCLUSION: Selected volumetric MRI findings correlated with hypothermia therapy and neurosensory impairments. Larger studies using MRI brain volumes as a secondary outcome measure are needed.