5 resultados para molecular size

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p53 mutations are the most commonly observed genetic alterations in human cancers to date. A majority of these point mutations cluster in four evolutionarily conserved domains spanning amino acids 100-300. This region of p53 has been called its central conserved, or conformational domain. This domain of p53 is also targeted by the SV40 T antigen. Mutation, as well as interaction with SV40 T antigen results in inactivation of p53. We hypothesized that mutations and SV40 T antigen disrupt p53 function by interfering with the molecular interactions of the central conserved domain. Using a chimeric protein consisting of the central conserved domain of wild-type p53 (amino acids 115-295) and a protein A affinity tail, we isolated several cellular proteins that interact specifically with this domain of p53. These proteins range in size from 30K to 90K M$\rm\sb{r}.$ We also employed the p53 fusion protein to demonstrate that the central conserved domain of p53 possesses sequence-specific DNA-binding activity. Interestingly, the cellular proteins binding to the central conserved domain of p53 enhance the sequence-specific DNA-binding activity of full length p53. Partial purification of the individual proteins binding to the conformational domain of p53 by utilizing a sodium chloride step-gradient enabled further characterization of two proteins: (1) a 42K M$\rm\sb{r}$ protein that eluted at 0.5M NaCl, and bound DNA nonspecifically, and (2) a 35K M$\rm\sb{r}$ protein eluting into the 1.0M NaCl fraction, capable of enhancing the sequence-specific DNA-binding activity of p53. In order to determine the physiologic relevance of the molecular interactions of the conformational domain of p53, we examined the biochemical processes underlying the TNF-$\alpha$ mediated growth suppression of the NSCLC cell line H460. While growth suppression was accompanied by enhanced sequence-specific p53-DNA binding activity in TNF-$\alpha$ treated H460 nuclei, there was no increase in p53 protein levels. Furthermore, p35 was upregulated in TNF-$\alpha$ treated H460 cells, suggesting that the enhanced p53-DNA binding seen in these cells may be mediated by p35. Our studies define two novel interactions involving the central conserved domain of p53 that appear to be functionally relevant: (1) sequence-specific DNA-binding, and (2) interaction with other cellular proteins. ^