9 resultados para molecular pathology
em DigitalCommons@The Texas Medical Center
Resumo:
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.
Resumo:
The primary objective of this study has been to investigate the effects at the molecular level of trisomy of mouse chromosome 7 in chemically induced skin tumors. It was previously proposed that the initiation event in the mouse skin carcinogenesis model is a heterozygous mutation of the Ha-ras-1 gene, mapped to chromosome 7. Previous studies in this laboratory identified trisomy 7 as one of the primary nonrandom cytogenetic abnormalities found in the majority of severely dysplastic papillomas and squamous cell carcinomas induced in SENCAR mice by an initiation-promotion protocol. Therefore, the first hypothesis tested was that trisomy 7 occurs by specific duplication of the chromosome carrying a mutated Ha-ras-1 allele. Results of a quantitative analysis of normal/mutated allelic ratios of the Ha-ras-1 gene confirmed this hypothesis, showing that most of the tumors exhibited overrepresentation of the mutated allele in the form of 1/2, 0/3, and 0/2 (normal/mutated) ratios. In addition, histopathological analysis of the tumors showed an apparent association between the degree of malignancy and the dosage of the mutated Ha-ras-1 allele. To determine the mechanism for loss of the normal Ha-ras-1 allele, found in 30% of the tumors, a comparison of constitutional and tumor genotypes was performed at different informative loci of chromosome 7. By combining Southern blot and polymerase chain reaction fragment length polymorphism analyses of DNAs extracted from squamous cell carcinomas, complete loss of heterozygosity was detected in 15 of 20 tumors at the Hbb locus, and in 5 of 5 tumors at the int-2 locus, both distal to Ha-ras-1. In addition, polymerase chain reaction analysis of DNA extracted from papillomas indicated that loss of heterozygosity occurs in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion, suggesting that this event may be associated to the acquisition of the malignant phenotype. Allelic dosage analysis of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1, indicated that loss of heterozygosity on mouse chromosome 7 occurs by a mitotic recombination mechanism. Overall, these findings suggest the presence of a putative tumor suppressor locus on the 7F1-ter region of mouse chromosome 7. Thus, loss of function by homozygosis at this putative suppressor locus may complement activation of the Ha-ras-1 gene during tumor progression, and might be associated with the malignant conversion stage of mouse skin carcinogenesis. ^
Resumo:
Prostate cancer represents the most commonly diagnosed malignancies in American men and is the second leading cause of male cancer deaths. The overall objectives of this research were designed to understand the cellular and molecular mechanisms of prostatic carcinoma growth and progression. This dissertation was divided into two major parts: (1) to clone and characterize soluble factor(s) associated with bone that may mediate prostatic carcinoma growth and progression; (2) to investigate the roles of extracellular matrix in prostatic carcinogenesis.^ The propensity of prostate cancer cells to metastasize to the axial skeleton and the subsequent osteoblastic reactions observed in the bone indicate the possible reciprocal cellular interaction between prostate cancer cells and the bone microenvironment. To understand the molecular and cellular basis of this interaction, I focused on the identification and cloning of soluble factor(s) from bone stromal cells that may exert direct mitogenic action on cultured prostate cells. A novel BPGF-1 gene expressed specifically by bone and male accessory sex organs (prostate, seminal vesicles, and coagulating gland) was identified and cloned.^ The BPGF-1 was identified and cloned from a cDNA expression library prepared from a human bone stromal cell line, MS. The conditioned medium (CM) of this cell line contains mitogenic materials that induce human prostate cancer cell growth both in vivo and in vitro. The cDNA expression library was screened by an antibody prepared against the mitogenic fraction of the CM.^ The cloned BPGF-1 cDNA comprises 3171 nucleotides with a single open reading frame of 1620 nucleotides encoding 540 amino acids. The BPGF-1 gene encodes two transcripts (3.3 and 2.5 kb) with approximately equal intensity in human cells and tissues, but only one transcript (2.5 kb) in rat and mouse tissues. Southern blot analysis of human genomic DNA revealed a single BPGF-1 gene. The BPGF-1 gene is expressed predominantly in bone and seminal vesicles, but at a substantially lower level in prostate. Polyclonal antibodies generated from synthetic peptides that correspond to the nucleotide sequences of the cloned BPGF-1 cDNA reacted with a putative BPGF-1 protein with an apparent molecular weight of 70 kDa. The conditioned media isolated from COS cells transfected with BPGF-1 cDNA stimulated the proliferation and increased the anchorage-independent growth of prostate epithelial cells. These findings led us to hypothesize that BPGF-1 expression in relevant organs, such as prostate, seminal vesicles, and bone, may lead to local prostate cancer growth, metastasis to the seminal vesicles, and subsequently dissemination to the skeleton.^ To assess the importance of extracellular matrix in prostatic carcinogenesis, the role of extracellular matrix in induction of rat prostatic carcinoma growth in vivo was evaluated. NbE-1, a nontumorigenic rat prostatic epithelial cell line, was induced to form carcinoma in athymic nude hosts by coinjecting them with Matrigel and selected extracellular matrix components. Induction of prostatic tumor formation by laminin and collagen IV was inhibited by their respective antibodies. Prostatic epithelial cells cloned from the tumor tissues were found to form tumors in athymic nude hosts in the absence of exogenously added extracellular matrix. These results suggest that extracellular matrix induce irreversibly prostatic epithelial cells that behave distinctively different from the parental prostatic epithelial cell line. ^
Resumo:
Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^
Resumo:
To better understand the mechanisms of how the human prostacyclin receptor (1P) mediates vasodilation and platelet anti-aggregation through Gs protein coupling, a strategy integrating multiple approaches including high resolution NMR experiments, synthetic peptide, fluorescence spectroscopy, molecular modeling, and recombinant protein was developed and used to characterize the structure/function relationship of important segments and residues of the IP receptor and the α-subunit of the Gs protein (Gαs). The first (iLP1) and third (iLP3) intracellular loops of the IP receptor, as well as the Gαs C-terminal domain, relevant to the Gs-mediated IP receptor signaling, were first identified by observation of the effects of the mini gene-expressed corresponding protein segments in HEK293 cells which co-expressed the receptor and Gαs. Evidence of the IP iLP1 domain interacted with the Gαs C-terminal domain was observed by fluorescence and NMR spectroscopic studies using a constrained synthetic peptide, which mimicked the IP iLP1 domain, and the synthetic peptide, which mimicked Gαs C-terminal domain. The solution structural models and the peptide-peptide interaction of the two synthetic protein segments were determined by high resolution NMR spectroscopy. The important residues in the corresponding domains of the IP receptor and the Gαs predicted by NMR chemical shift mapping were used to guide the identification of their protein-protein interaction in cells. A profile of the residues Arg42 - Ala48 of the IP iLP1 domain and the three residues Glu392 ∼ Leu394 of the Gαs C-terminal domain involved in the IP/Gs protein coupling were confirmed by recombinant proteins. The data revealed an intriguing speculation on the mechanisms of how the signal of the ligand-activated IP receptor is transmitted to the Gs protein in regulating vascular functions and homeostasis, and also provided substantial insights into other prostanoid receptor signaling. ^
Resumo:
While there is considerable information on the molecular aberrations associated with the development of endometrial cancer, very little is known of changes in gene expression associated with its antecedent premalignant condition, endometrial hyperplasia. In order to address this, we have compared the level of expression of components of the IGF-I signaling pathway in human endometrial hyperplasia to their level of expression in both the normal pre-menopausal endometrium and endometrial carcinoma. We have also characterized the molecular characteristics of endometrial hyperplasia as it occurs in a murine model of hormone-dependent tumorigenesis of the female reproductive tract. ^ There was a significant and selective increase in the expression of the IGF-I Receptor (IGF-IR) in both human hyperplasia and carcinoma as compared to the normal endometrium. The receptor was also activated, as judged by increased tyrosine phosphorylation. In addition, in hyperplasia and carcinoma there is activation of the downstream component Akt. The expression of the PTEN tumor suppressor is decreased in a subset of subjects with hyperplasia and in all of the carcinomas. The simultaneous loss of PTEN expression and increased IGF-IR activation in the hyperplastic endometrium was associated with an increased incidence of endometrial carcinoma elsewhere within the uterus. In the rodent hyperplasia, there was a significant increase in the expression and activation of Akt that appears to be attributable to a marked increase in the expression of IGF-II. ^ Our studies have demonstrated the pathologic proliferation of both the human and rodent endometrium is linked to a marked activation of the Akt pathway. However the cause of this dysregulation is different in the human disease and the animal model. In rodents, hyperplasia is linked to increased expression of one of the ligands of the IGF-IR, IGF-II. In humans the IGF-I receptor itself is upregulated and activated. Additional activation of the Akt pathway via the suppression of PTEN activity, results in conditions that are associated with the marked increase in the probability of developing endometrial cancer. Our data suggests that increased activity of the IGF-I pathway plays the key role in the hyperproliferative state characteristic of endometrial hyperplasia and cancer.^
Resumo:
With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.
Resumo:
The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^
Resumo:
To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^