24 resultados para mismatch repair protein
em DigitalCommons@The Texas Medical Center
Resumo:
Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
BACKGROUND: Mismatch repair deficient (MMRD) colorectal (CRC) or endometrial (EC) cancers in the absence of MLH1 promoter hypermethylation and BRAF mutations are suggestive of Lynch syndrome (LS). Positive germline genetic test results confirm LS. It is unclear if individuals with MMRD tumors but no identified germline mutation or sporadic cause (MMRD+/germline-) have LS. HYPOTHESIS: Since LS is hereditary, individuals with LS should have a stronger family history of LS-related cancers than individuals with sporadic tumors. We hypothesized that MMRD+/germline- CRC and/or EC patients would have less suggestive family histories than LS CRC and/or EC patients. METHODS: 253 individuals with an MMRD CRC or EC who underwent genetic counseling at one institution were included in analysis in 1 of 4 groups: LS, MMRD+/germline-, MMRD+/VUS, sporadic MSI-H (MMRD tumor with MLH1 promoter hypermethylation or BRAF mutation). Family histories were analyzed utilizing MMRpro and PREMM1,2,6. Kruskal-Wallis tests were used to compare family history scores. Logistic regression was used to determine what factors were predictive of LS. RESULTS: MMRD+/germline- individuals had significantly lower median family history scores (PREMM1,2,6=7.3, MMRpro=8.1) than LS individuals (PREMM1,2,6=26.1, MMRpro=89.8, p CONCLUSION: MMRD+/germline- individuals have less suggestive family histories of LS than individuals with LS, but more suggestive family histories than sporadic MSI-H individuals. CRC and/or EC patients with abnormal tumor studies are more likely to have a germline LS mutation if they have a family history suggestive of hereditary cancer. These results imply that the MMRD+/germline- group may not all have LS. This finding highlights the need to determine other somatic, epigenetic or germline causes of MMRD tumors so that these patients and their families can be accurately counseled regarding screening and management.
Resumo:
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^
Resumo:
Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.
Resumo:
Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development. (1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 deficiency impairs DNA damage-induced p53 stabilization. Notably, ZNF668 effectively suppresses breast cancer cell proliferation and transformation in vitro and tumorigenicity in vivo. Consistently, ZNF668 knockdown readily transforms normal mammary epithelial cells. Together, our studies identify ZNF668 as a novel breast tumor suppressor gene that acts at least in part by regulating the stability and function of p53. (2) ZNF668 functions as a DNA repair protein by regulating histone acetylation. DNA repair proteins need to access the chromatin by chromatin modification or remodeling to use DNA template within chromatin. Dynamic posttranslational modifications of histones are critical for cells to relax chromatin in DNA repair. However, the precise underlying mechanism mediating enzymes responsible for these modifications and their recruitment to DNA lesions remains poorly understood. We observed ZNF668 depletion causes impaired chromatin relaxation as a result of impaired DNA-damage induced histone H2AX hyper-acetylation. This results in the decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after DNA damage, albeit with the presence of a functional ATM/ATR dependent DNA-damage signaling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in ZNF668-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of ZNF668 is due to impeded chromatin accessibility at sites of DNA breaks. Our findings therefore identify ZNF668 as a key molecule that links chromatin relaxation with response to DNA damage in the control of DNA repair.
Resumo:
A complete physical map of Escherichia coli K-12 strain MG1655 was constructed by digesting chromosomal DNA with the infrequently cutting restriction enzymes NotI, SfiI and XbaI and separating the fragments by pulsed field gel electrophoresis. The map was used to compare six K-12 strains of E. coli. Although several differences were noted and localized, the map of MG1655 was representative of all the K-12 strains tested. The maps were also used to analyze chromosomal rearrangements in the E. coli strain MG1655. The spontaneous and UV induced frequencies of tandem duplication formation were measured at several loci distributed around the chromosome. The spontaneous duplication frequency varied from 10$\sp{-5}$ to 10$\sp{-3}$ and increased at least ten-fold following mild UV irradiation treatment. Duplications of several regions of the chromosome, including the serA region and the metE region, were mapped using pulsed field gel electrophoresis. Duplications of serA were found to be large, ranging in size from 600 kb to 2100 kb. Several of the duplications isolated at serA were caused by ectopic recombination between IS5 elements and between IS186 elements. Duplications of the metE region, however, were almost exclusively the result of ectopic recombination between ribosomal RNA cistrons. Duplication frequencies were determined at both serA and metE in wild type and mismatch repair mutant strains (mutL, mutS, uvrD and recF). Even though all of the mismatch repair mutations increased duplication frequency of metE, the largest increases were observed in the mutL and mutS strains. Duplication frequency of serA was increased less dramatically by mutations in mismatch repair. Several duplications of metE isolated in a wild type and a mismatch repair mutant were mapped. The results showed that the same repeated sequences were used for duplication formation in the mismatch repair mutant as were used in the wild type strain. Several isolates showed evidence of multiple rearrangements indicating that mismatch repair may play a role in stabilizing the genome by controlling chromosomal rearrangement. ^
Resumo:
Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^
Resumo:
Purpose. We performed a case-comparison study to describe the characteristics of LUS tumors and their association with risk factors for endometrial cancer. ^ Patients and Methods. From January 1996 through October 2007, 3,892 women were identified with a diagnosis of primary endometrial carcinoma or primary cervical adenocarcinoma. Pathology records from the 1,009 women who had a hysterectomy were reviewed. Subjects were included in the LUS group only if the tumor was clearly originating from the area between the lower corpus and upper cervix in the hysterectomy specimen. The LUS group was compared to all patients with endometrial corpus carcinoma who underwent hysterectomy at our institution in a 12-month period randomly selected from the study period. Risk factors for endometrial carcinoma such as body mass index (BMI) and Lynch Syndrome were assessed. Expression of estrogen receptor (ER), vimentin, carcinoembryonic antigen (CEA), p16, and human papilloma virus DNA (HPV DNA) was assessed; this panel is known to be effective in distinguishing adenocarcinomas of endometrial versus endocervical origin. Fisher's Exact, Chi-square, Mann-Whitney, and Student's t-tests were utilized for statistical analysis. ^ Results. Thirty-five of 1,009 women had endometrial carcinoma of the LUS (3.5%; 95% CI: 2–4%). Compared to patients with corpus tumors, LUS patients were younger (54.2 vs. 62.9 years, P = .001), had higher stage (P < .001), and more invasive tumors (P = .001). Preoperative diagnosis of the LUS tumors more frequently included the possibility of endocervical adenocarcinoma ( P < .001), leading to preoperative radiation therapy in 4 patients. Median BMI was similar in the LUS and corpus groups. Seventy-three percent of the available LUS tumors had a similar immunohistochemical expression pattern to conventional endometrioid adenocarcinoma. Because of the young median age for the LUS group, we performed immunohistochemistry for Lynch syndrome-associated DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. Microsatellite instability testing (MSI) and MLH1 promoter hypermethylation were performed when indicated. Thirty-six percent of the LUS tumors were MSI-high. Ten of thirty-five (29%) women with LUS tumors were either confirmed to have Lynch Syndrome or were strongly suspected to have Lynch Syndrome based on tissue-based molecular assays (95% CI, 16 to 45%). ^ Conclusions. Endometrial carcinoma arising in the LUS is a clinical and pathologic entity which can be diagnostically confused with cervical adenocarcinoma. In general, LUS tumors can be correctly identified as being endometrial carcinoma using the immunohistochemical panel noted above. The prevalence of Lynch Syndrome in patients with LUS tumors is much greater than that of the general endometrial cancer population (1.8%) or in endometrial cancer patients younger than 50 years of age (8–9%). Based on our results, the possibility of Lynch Syndrome should be considered in women with LUS tumors. ^
Resumo:
Background: Lynch Syndrome (LS) is a familial cancer syndrome with a high prevalence of colorectal and endometrial carcinomas among affected family members. Clinical criteria, developed from information obtained from familial colorectal cancer registries, have been generated to identify individuals at elevated risk for having LS. In 2007, the Society of Gynecologic Oncology (SGO) codified criteria to assist in identifying women presenting with gynecologic cancers at elevated risk for having LS. These criteria have not been validated in a population-based setting. Materials and Methods: We retrospectively identified 412, unselected endometrial cancer cases. Clinical and pathologic information were obtained from the electronic medical record, and all tumors were tested for expression of the DNA mismatch repair proteins through immunohistochemistry. Tumors exhibiting loss of MSH2, MSH6 and PMS2 were designated as probable Lynch Syndrome (PLS). For tumors exhibiting immunohistochemical loss of MLH1, we used the PCR-based MLH1 methylation assay to delineate PLS tumors from sporadic tumors. Samples lacking methylation of the MLH1 promoter were also designated as PLS. The sensitivity and specificity for SGO criteria for detecting PLS tumors was calculated. We compared clinical and pathologic features of sporadic tumors and PLS tumors. A simplified cost-effectiveness analysis was also performed comparing the direct costs of utilizing SGO criteria vs. universal tumor testing. Results: In our cohort, 43/408 (10.5%) of endometrial carcinomas were designated as PLS. The sensitivity and specificity of SGO criteria to identify PLS cases were 32.7 and 77%, respectively. Multivariate analysis of clinical and pathologic parameters failed to identify statistically significant differences between sporadic and PLS tumors with the exception of tumors arising from the lower uterine segment. These tumors were more likely to occur in PLS tumors. Cost-effectiveness analysis showed clinical criteria and universal testing strategies cost $6,235.27/PLS case identified and $5,970.38/PLS case identified, respectively. Conclusions: SGO 5-10% criteria successfully identify PLS cases among women who are young or have significant family history of LS related tumors. However, a larger proportion of PLS cases occurring at older ages with less significant family history are not detected by this screening strategy. Compared to SGO clinical criteria, universal tumor testing is a cost effective strategy to identify women presenting with endometrial cancer who are at elevated risk for having LS.
Resumo:
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made.All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a 'dormant' or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).
Resumo:
The carcinogenic activity of water-insoluble crystalline nickel sulfide requires phagocytosis and lysosome-mediated intracellular dissolution of the particles to yield Ni('2+). This study investigated the extent and nature of the DNA damage in Chinese hamster ovary cells treated with various nickel compounds using the technique of alkaline elution. Crystalline NiS and water-soluble NiCl(,2) induced single strand breaks that were repaired quickly and DNA-protein crosslinks that persisted up to 24 hr after exposure to nickel. The induction of single strand breaks was concentration dependent at both noncytotoxic and lethal amounts of nickel. The induction of DNA-protein crosslinks was concentration dependent but was absent at lethal amounts of nickel. The cytoplasmic and nuclear uptake of nickel was concentration dependent even at the toxic level of nickel. However, the induction of DNA-protein crosslinks by nickel required active cell cycling and occurred predominantly in mid-late S phase of the cell cycle, suggesting that the lethal amounts of nickel inhibited DNA-protein crosslinking by inhibiting active cell cycling. Since the DNA-protein crosslinking induced by nickel was resistant to DNA repair, the nature of this lesion was investigated using various methods of DNA isolation and chromatin fractionation in combination with SDS-polyacrylamide gel electrophoresis. High molecular weight, non-histone chromosomal proteins and possibly histone 1 were preferentially crosslinked to DNA by nickel. The crosslinked proteins were concentrated in a magnesium-insoluble fraction of sonicated chromatin (5% of the total) that was similar to heterochromatin in solubility and protein composition. Alterations in DNA structure and function, brought about by the effect of nickel on protein-DNA interactions, may be related to the carcinogenicity of nickel compounds. ^
Resumo:
Sensitive assays utilizing a cell-free and an intracellular system were employed to study the molecular bases of the DNA-damaging reactions of neocarzinostatin (NCS). In the cell-free DNA system, super-helical form I DNA from the bacteriophage PM2 was used as the substrate. The three forms of DNA present after treatment with NCS were separated by agarose gel electrophoresis. When NCS-damaged DNA was assayed under neutral conditions, there was a progressive decrease in the amount of surviving form I DNA and a corresponding increase in form II (nicked, relaxed circular) DNA, but very little increase in form III (linear duplex) DNA. This indicates that NCS introduces primarily single-strand breaks. However later studies showed that there were some site-specific double-strand breaks mediated by NCS on PM2 DNA. Seven such specific sites were mapped on the PM2 genome. When the damage was assayed under nondenaturing alkaline conditions or with the apurinic/apyrimidinic endonuclease IV, there was a slightly greater decrease in the amount of surviving form I DNA compared with neutral conditions indicating the presence of some alkali-labile sites.^ NCS-mediated DNA damage and repair were examined with cultured Chinese hamster ovary (CHO) cells using either alkaline elution for analysis of single-strand breaks or neutral elution for analysis of double-strand breaks. Most of the strand breaks introduced by NCS were capable of being rejoined. However, there was a small amount of residual DNA damage remaining unrejoined at 24-hr after removal of the drug. The amount of residual DNA damage was higher in a CHO mutant cell line (EM9) having a higher sensitivity to killing by NCS than its parental strain (AA8). Other lesions, DNA-protein complexes and alkali-labile sites, were detected after NCS treatment but they constituted only a small fraction of the DNA damage.^ Based on the above information, it can be postulated that NCS introduces some very lethal DNA damage. It is likely that the lethal lesions are a subset of the total DNA lesions representing the residual DNA damage. This DNA damage may be composed of site-specific, unrejoinable double-strand breaks and are thus the primary lesion leading to NCS-mediated lethality.^