32 resultados para microwave medical imaging

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Given the fragmentation of outpatient care, timely follow-up of abnormal diagnostic imaging results remains a challenge. We hypothesized that an electronic medical record (EMR) that facilitates the transmission and availability of critical imaging results through either automated notification (alerting) or direct access to the primary report would eliminate this problem. METHODS: We studied critical imaging alert notifications in the outpatient setting of a tertiary care Department of Veterans Affairs facility from November 2007 to June 2008. Tracking software determined whether the alert was acknowledged (ie, health care practitioner/provider [HCP] opened the message for viewing) within 2 weeks of transmission; acknowledged alerts were considered read. We reviewed medical records and contacted HCPs to determine timely follow-up actions (eg, ordering a follow-up test or consultation) within 4 weeks of transmission. Multivariable logistic regression models accounting for clustering effect by HCPs analyzed predictors for 2 outcomes: lack of acknowledgment and lack of timely follow-up. RESULTS: Of 123 638 studies (including radiographs, computed tomographic scans, ultrasonograms, magnetic resonance images, and mammograms), 1196 images (0.97%) generated alerts; 217 (18.1%) of these were unacknowledged. Alerts had a higher risk of being unacknowledged when the ordering HCPs were trainees (odds ratio [OR], 5.58; 95% confidence interval [CI], 2.86-10.89) and when dual-alert (>1 HCP alerted) as opposed to single-alert communication was used (OR, 2.02; 95% CI, 1.22-3.36). Timely follow-up was lacking in 92 (7.7% of all alerts) and was similar for acknowledged and unacknowledged alerts (7.3% vs 9.7%; P = .22). Risk for lack of timely follow-up was higher with dual-alert communication (OR, 1.99; 95% CI, 1.06-3.48) but lower when additional verbal communication was used by the radiologist (OR, 0.12; 95% CI, 0.04-0.38). Nearly all abnormal results lacking timely follow-up at 4 weeks were eventually found to have measurable clinical impact in terms of further diagnostic testing or treatment. CONCLUSIONS: Critical imaging results may not receive timely follow-up actions even when HCPs receive and read results in an advanced, integrated electronic medical record system. A multidisciplinary approach is needed to improve patient safety in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypothesis and Objectives PEGylated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Secondly, visualization of the (real-time) therapeutic effects of tissue-Plasminogen Activator (t-PA) on pulmonary embolism (PE) was attempted. Materials and Methods Six rabbits (approximate 4 kg weight) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml, GE HealthCare, Princeton, NJ) at a dose of 1400 mgI per animal and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mgI/animal). Subsequently, five animals were injected with 2mg t-PA and imaging continued for up to 4 ½ hours. Results Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited non uniform opacification and rapid clearance post injection. Three out of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, Pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10–57%, mean 42%). One animal showed no response to t-PA. Conclusions Liposomal blood pool agents effectively identified acute PE without need for re-injection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High resolution, vascular magnetic resonance imaging of the spine region in small animals poses several challenges. The small anatomical features, extravascular diffusion, and the low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomical features of the perispinal vasculature not visible with conventional contrast agent (Gd-DTPA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Polyethylene glycol-coated liposomal blood pool contrast agents maintain contrast enhancement over several hours. This study aimed to evaluate (long-term) imaging of pulmonary arteries, comparing conventional iodinated contrast with a liposomal blood pool contrast agent. Also, visualization of the (real-time) therapeutic effects of tissue plasminogen activator (t-PA) on pulmonary embolism (PE) was attempted. MATERIALS AND METHODS: Six rabbits (weight approximately 4 kg) had autologous blood clots injected through the superior vena cava. Imaging was performed using conventional contrast (iohexol, 350 mg I/ml; GE HealthCare, Princeton, NJ) at a dose of 1400 mg I per animal, and after wash-out, animals were imaged using an iodinated liposomal blood pool agent (88 mg I/mL, dose 900 mg I/animal). Subsequently, five animals were injected with 2 mg of t-PA and imaging continued for up to 4(1/2) hours. RESULTS: Both contrast agents identified PE in the pulmonary trunk and main pulmonary arteries in all rabbits. Liposomal blood pool agent yielded uniform enhancement, which remained relatively constant throughout the experiments. Conventional agents exhibited nonuniform opacification and rapid clearance postinjection. Three of six rabbits had mistimed bolus injections, requiring repeat injections. Following t-PA, pulmonary embolus volume (central to segmental) decreased in four of five treated rabbits (range 10-57%, mean 42%). One animal showed no response to t-PA. CONCLUSIONS: Liposomal blood pool agents effectively identified acute PE without need for reinjection. PE resolution following t-PA was quantifiable over several hours. Blood pool agents offer the potential for repeated imaging procedures without need for repeated (nephrotoxic) contrast injections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spasmodic dysphonia is a neurological disorder characterized by involuntary spasms in the laryngeal muscles during speech production. Although the clinical symptoms are well characterized, the pathophysiology of this voice disorder is unknown. We describe here, for the first time to our knowledge, disorder-specific brain abnormalities in these patients as determined by a combined approach of diffusion tensor imaging (DTI) and postmortem histopathology. We used DTI to identify brain changes and to target those brain regions for neuropathological examination. DTI showed right-sided decrease of fractional anisotropy in the genu of the internal capsule and bilateral increase of overall water diffusivity in the white matter along the corticobulbar/corticospinal tract in 20 spasmodic dysphonia patients compared to 20 healthy subjects. In addition, water diffusivity was bilaterally increased in the lentiform nucleus, ventral thalamus and cerebellar white and grey matter in the patients. These brain changes were substantiated with focal histopathological abnormalities presented as a loss of axonal density and myelin content in the right genu of the internal capsule and clusters of mineral depositions, containing calcium, phosphorus and iron, in the parenchyma and vessel walls of the posterior limb of the internal capsule, putamen, globus pallidus and cerebellum in the postmortem brain tissue from one patient compared to three controls. The specificity of these brain abnormalities is confirmed by their localization, limited only to the corticobulbar/corticospinal tract and its main input/output structures. We also found positive correlation between the diffusivity changes and clinical symptoms of spasmodic dysphonia (r = 0.509, P = 0.037). These brain abnormalities may alter the central control of voluntary voice production and, therefore, may underlie the pathophysiology of this disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion tensor imaging (DTI) and immunohistochemistry were performed in spinal cord injured rats to understand the basis for activation of multiple regions in the brain observed in functional magnetic resonance imaging (fMRI) studies. The measured fractional anisotropy (FA), a scalar measure of diffusion anisotropy, along the region encompassing corticospinal tracts (CST) indicates significant differences between control and injured groups in the 3 to 4 mm area posterior to bregma that correspond to internal capsule and cerebral peduncle. Additionally, DTI-based tractography in injured animals showed increased number of fibers that extend towards the cortex terminating in the regions that were activated in fMRI. Both the internal capsule and cerebral peduncle demonstrated an increase in GFAP-immunoreactivity compared to control animals. GAP-43 expression also indicates plasticity in the internal capsule. These studies suggest that the previously observed multiple regions of activation in spinal cord injury are, at least in part, due to the formation of new fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in cocaine-dependent human subjects have shown differences in white matter on diffusion tensor imaging (DTI) compared with non-drug-using controls. It is not known whether the differences in fractional anisotropy (FA) seen on DTI in white matter regions of cocaine-dependent humans result from a pre-existing predilection for drug use or purely from cocaine abuse. To study the effect of cocaine on brain white matter, DTI was performed on 24 rats after continuous infusion of cocaine or saline for 4 weeks, followed by brain histology. Voxel-based morphometry analysis showed an 18% FA decrease in the splenium of the corpus callosum (CC) in cocaine-treated animals relative to saline controls. On histology, significant increase in neurofilament expression (125%) and decrease in myelin basic protein (40%) were observed in the same region in cocaine-treated animals. This study supports the hypothesis that chronic cocaine use alters white matter integrity in human CC. Unlike humans, where the FA in the genu differed between cocaine users and non-users, the splenium was affected in rats. These differences between rodent and human findings could be due to several factors that include differences in the brain structure and function between species and/or the dose, timing, and duration of cocaine administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Autofluorescence imaging is used widely for diagnostic evaluation of various epithelial malignancies. Cancerous lesions display loss of autofluorescence due to malignant changes in epithelium and subepithelial stroma. Carcinoma of unknown primary site presents with lymph node or distant metastasis, for which the site of primary tumour is not detectable. We describe here the use of autofluorescence imaging for detecting a clinically innocuous appearing occult malignancy of the palate which upon pathological examination was consistent with a metastatic squamous cell carcinoma. CASE DESCRIPTION: A submucosal nodule was noted on the right posterior hard palate of a 59-year-old white female during clinical examination. Examination of this lesion using a multispectral oral cancer screening device revealed loss of autofluorescence at 405 nm illumination. An excisional biopsy of this nodule, confirmed the presence of a metastatic squamous cell carcinoma. Four years ago, this patient was diagnosed with metastatic squamous cell carcinoma of the right mid-jugular lymph node of unknown primary. She was treated with external beam irradiation and remained disease free until current presentation. CONCLUSION: This case illustrates the important role played by autofluorescence tissue imaging in diagnosing a metastatic palatal tumour that appeared clinically innocuous and otherwise would not have been biopsied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.