5 resultados para metadati, CMS, Drupal
em DigitalCommons@The Texas Medical Center
Resumo:
Virtual colonoscopy (VC) is a minimally invasive means for identifying colorectal polyps and colorectal lesions by insufflating a patient’s bowel, applying contrast agent via rectal catheter, and performing multi-detector computed tomography (MDCT) scans. The technique is recommended for colonic health screening by the American Cancer Society but not funded by the Centers for Medicare and Medicaid Services (CMS) partially because of potential risks from radiation exposure. To date, no in‐vivo organ dose measurements have been performed for MDCT scans; thus, the accuracy of any current dose estimates is currently unknown. In this study, two TLDs were affixed to the inner lumen of standard rectal catheters used in VC, and in-vivo rectal dose measurements were obtained within 6 VC patients. In order to calculate rectal dose, TLD-100 powder response was characterized at diagnostic doses such that appropriate correction factors could be determined for VC. A third-order polynomial regression with a goodness of fit factor of R2=0.992 was constructed from this data. Rectal dose measurements were acquired with TLDs during simulated VC within a modified anthropomorphic phantom configured to represent three sizes of patients undergoing VC. The measured rectal doses decreased in an exponential manner with increasing phantom effective diameter, with R2=0.993 for the exponential regression model and a maximum percent coefficient of variation (%CoV) of 4.33%. In-vivo measurements yielded rectal doses ranged from that decreased exponentially with increasing patient effective diameter, in a manner that was also favorably predicted by the size specific dose estimate (SSDE) model for all VC patients that were of similar age, body composition, and TLD placement. The measured rectal dose within a younger patient was favorably predicted by the anthropomorphic phantom dose regression model due to similarities in the percentages of highly attenuating material at the respective measurement locations and in the placement of the TLDs. The in-vivo TLD response did not increase in %CoV with decreasing dose, and the largest %CoV was 10.0%.
Resumo:
New reimbursement policies developed by the Centers for Medicare and Medicaid Services (CMS) are revolutionizing the health care landscape in America. The policies focus on clinical quality and patient outcomes. As part of the new policies, certain hospital acquired conditions have been identified by Medicare as "reasonably preventable". Beginning October 1, 2008, Medicare will no longer reimburse hospitals for these conditions developed after admission, pressure ulcers are among the most common of these conditions.^ In this practice-based culminating experience the objective was to provide a practical account of the process of program development, implementation and evaluation in a public health setting. In order to decrease the incidence of pressure ulcers, the program development team of the hospital system developed a comprehensive pressure ulcer prevention program using a "bundled" approach. The pressure ulcer prevention bundle was based on research supported by the Institute for Healthcare Improvement, and addressed key areas of clinical vulnerability for pressure ulcer development. The bundle consisted of clinical processes, policies, forms, and resources designed to proactively identify patients at risk for pressure ulcer development. Each element of the bundle was evaluated to ensure ease of integration into the workflow of nurses and clinical ancillary staff. Continued monitoring of pressure ulcer incidence rates will provide statistical validation of the impact of the prevention bundle. ^
Resumo:
The Long Term Acute Care Hospitals (LTACH), which serve medically complex patients, have grown tremendously in recent years, by expanding the number of Medicare patient admissions and thus increasing Medicare expenditures (Stark 2004). In an attempt to mitigate the rapid growth of the LTACHs and reduce related Medicare expenditures, Congress enacted Section 114 of P.L. 110-173 (§114) of the Medicare, Medicaid and SCHIP Extension Act (MMSEA) in December 29, 2007 to regulate the LTCAHs industry. MMSEA increased the medical necessity reviews for Medicare admissions, imposed a moratorium on new LTCAHs, and allowed the Centers for Medicare and Medicaid Services (CMS) to recoup Medicare overpayments for unnecessary admissions. ^ This study examines whether MMSEA impacted LTACH admissions, operating margins and efficiency. These objectives were analyzed by comparing LTACH data for 2008 (post MMSEA) and data for 2006-2007 (pre-MMSEA). Secondary data were utilized from the American Hospital Association (AHA) database and the American Hospital Directory (AHD).^ This is a longitudinal retrospective study with a total sample of 55 LTACHs, selected from 396 LTACHs facilities that were fully operational during the study period of 2006-2008. The results of the research found no statistically significant change in total Medicare admissions; instead there was a small but not statistically significant reduction of 5% in Medicare admissions for 2008 in comparison to those for 2006. A statistically significant decrease in mean operating margins was confirmed between the years 2006 and 2008. The LTACHs' Technical Efficiency (TE), as computed by Data Envelopment Analysis (DEA), showed significant decrease in efficiency over the same period. Thirteen of the 55 LTACHs in the sample (24%) in 2006 were calculated as “efficient” utilizing the DEA analysis. This dropped to 13% (7/55) in 2008. Longitudinally, the decrease in efficiency using the DEA extension technique (Malmquist Index or MI) indicated a deterioration of 10% in efficiency over the same period. Interestingly, however, when the sample was stratified into high efficient versus low efficient subgroups (approximately 25% in each group), a comparison of the MIs suggested a significant improvement in Efficiency Change (EC) for the least efficient (MI 0.92022) and reduction in efficiency for the most efficient LTACHs (MI = 1.38761) over same period. While a reduction in efficiency for the most efficient is unexpected, it is not particularly surprising, since efficiency measure can vary over time. An improvement in efficiency, however, for the least efficient should be expected as those LTACHs begin to manage expenses (and controllable resources) more carefully to offset the payment/reimbursement pressures on their margins from MMSEA.^
Resumo:
The Federal Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid (CMS) play key roles in making Class III, medical devices available to the public, and they are required by law to meet statutory deadlines for applications under review. Historically, both agencies have failed to meet their respective statutory requirements. Since these failures affect patient access and may adversely impact public health, Congress has enacted several “modernization” laws. However, the effectiveness of these modernization laws has not been adequately studied or established for Class III medical devices. ^ The aim of this research study was, therefore, to analyze how these modernization laws may have affected public access to medical devices. Two questions were addressed: (1) How have the FDA modernization laws affected the time to approval for medical device premarket approval applications (PMAs)? (2) How has the CMS modernization law affected the time to approval for national coverage decisions (NCDs)? The data for this research study were collected from publicly available databases for the period January 1, 1995, through December 31, 2008. These dates were selected to ensure that a sufficient period of time was captured to measure pre- and post-modernization effects on time to approval. All records containing original PMAs were obtained from the FDA database, and all records containing NCDs were obtained from the CMS database. Source documents, including FDA premarket approval letters and CMS national coverage decision memoranda, were reviewed to obtain additional data not found in the search results. Analyses were conducted to determine the effects of the pre- and post-modernization laws on time to approval. Secondary analyses of FDA subcategories were conducted to uncover any causal factors that might explain differences in time to approval and to compare with the primary trends. The primary analysis showed that the FDA modernization laws of 1997 and 2002 initially reduced PMA time to approval; after the 2002 modernization law, the time to approval began increasing and continued to increase through December 2008. The non-combined, subcategory approval trends were similar to the primary analysis trends. The combined, subcategory analysis showed no clear trends with the exception of non-implantable devices, for which time to approval trended down after 1997. The CMS modernization law of 2003 reduced NCD time to approval, a trend that continued through December 2008. This study also showed that approximately 86% of PMA devices do not receive NCDs. ^ As a result of this research study, recommendations are offered to help resolve statutory non-compliance and access issues, as follows: (1) Authorities should examine underlying causal factors for the observed trends; (2) Process improvements should be made to better coordinate FDA and CMS activities to include sharing data, reducing duplication, and establishing clear criteria for “safe and effective” and “reasonable and necessary”; (3) A common identifier should be established to allow tracking and trending of applications between FDA and CMS databases; (4) Statutory requirements may need to be revised; and (5) An investigation should be undertaken to determine why NCDs are not issued for the majority of PMAs. Any process improvements should be made without creating additional safety risks and adversely impacting public health. Finally, additional studies are needed to fully characterize and better understand the trends identified in this research study.^
Resumo:
Objective::Describe and understand regional differences and associated multilevel factors (patient, provider and regional) to inappropriate utilization of advance imaging tests in the privately insured population of Texas. Methods: We analyzed Blue Cross Blue Shield of Texas claims dataset to study the advance imaging utilization during 2008-2010 in the PPO/PPO+ plans. We used three of CMS "Hospital Outpatient Quality Reporting" imaging efficiency measures. These included ordering MRI for low back pain without prior conservative management (OP-8) and utilization of combined with and without contrast abdominal CT (OP-10) and thorax CT (OP-11). Means and variation by hospital referral regions (HRR) in Texas were measured and a multilevel logistic regression for being a provider with high values for any the three OP measures was used in the analysis. We also analyzed OP-8 at the individual level. A multilevel logistic regression was used to identify predictive factors for having an inappropriate MRI for low back pain. Results: Mean OP-8 for Texas providers was 37.89%, OP-10 was 29.94% and OP-11 was 9.24%. Variation was higher for CT measure. And certain HRRs were consistently above the mean. Hospital providers had higher odds of high OP-8 values (OP-8: OR, 1.34; CI, 1.12-1.60) but had smaller odds of having high OP-10 and OP-11 values (OP-10: OR, 0.15; CI, 0.12-0.18; OP-11: OR, 0.43; CI, 0.34-0.53). Providers with the highest volume of imaging studies performed, were less likely to have high OP-8 measures (OP-8: OR, 0.58; CI, 0.48-0.70) but more likely to perform combined thoracic CT scans (OP-11: OR, 1.62; CI, 1.34-1.95). Males had higher odds of inappropriate MRI (OR, 1.21; CI, 1.16-1.26). Pattern of care in the six months prior to the MRI event was significantly associated with having an inappropriate MRI. Conclusion::We identified a significant variation in advance imaging utilization across Texas. Type of facility was associated with measure performance, but the associations differ according to the type of study. Last, certain individual characteristics such as gender, age and pattern of care were found to be predictors of inappropriate MRIs.^