8 resultados para memory effects

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of studies have established a role for vascular endothelial growth factor (VEGF) in angiogenesis. Recent reports have shown that VEGF overexpression in the hippocampus improves learning and memory and is associated with enhanced neurogenesis. PTK787/ZK222584 (PTK/ZK) is a reported inhibitor of VEGFR signaling that is currently being tested for its effects on lung and colon cancer. However, the influence of this drug on cognition has not been examined. In the present study, we questioned if post-training administration of PTK/ZK influences hippocampus-dependent memory. When administered to rats immediately following massed training in the Morris water maze, PTK/ZK impaired spatial memory retention tested 48 h later. This impairment was evidenced by increased latency to the hidden platform and fewer platform crossings. However, this impairment was not associated with a change in neurogenesis during this time frame. PTK/ZK infusion did not reduce VEGFR or AKT phosphorylation, but increased the phosphorylation of ERK. These studies suggest that VEGFR inhibitors such as PTK/ZK may negatively influence cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproductive hormones have effects on the nervous system not directly related to reproductive function. In the rat, for example, luteinizing hormone releasing hormone has dramatic effects on learning and memory. The present work attempts to examine the effects of reproductive hormones on non-reproductive behaviors and the neural loci and mechanisms underlying these effects in Aplysia, an animal whose behaviors, reproductive hormones and neural circuitry have been well characterized.^ In Aplysia, the neurosecretory bag cells release several peptides that are responsible for eliciting egg laying. The effects of these peptides on the defensive tail-siphon withdrawal reflex, as well as sensitization of this reflex, were examined. Sensitization, a simple form of nonassociative learning, refers to the behavioral enhancement of a response to a test stimulus after the presentation of a strong stimulus, that may last minutes (short-term) or days (long-term). An extract of the bag cells (BCE) inhibited the baseline siphon component of the tail-siphon withdrawal reflex and suppressed long-term, but not short-term, sensitization of the reflex. Preliminary experiments suggest that BCE also affects the tail component of the tail-siphon withdrawal reflex.^ To determine the neural mechanisms underlying the inhibition of the baseline reflex, electrophysiological studies were performed using an in vitro analogue of the tail-siphon withdrawal reflex to examine the ability of BCE, as well as the individual bag cell peptides (BCPs), to modulate the circuitry of the reflex. Bag cell extract attenuated the synaptic strength of the monosynaptic connections between tail sensory neurons and tail motor neurons. When individually applied only $\beta$-BCP produced a similar attenuation. This effect of $\beta$-BCP was not dependent on changes in duration of the presynaptic action potential.^ An in vitro analogue of long-term sensitization training was developed to examine the mechanisms by which the BCPs may affect long-term sensitization of the tail-siphon withdrawal reflex. This analogue exhibited both short- and long-term facilitation of the connections between the tail sensory and motor neurons.^ The results of these behavioral and electrophysiological experiments suggest that the BCPs inhibit the tail-siphon withdrawal reflex, at least in part, by modulating the synaptic strength of the connections between the sensory neurons and motor neurons underlying the reflex. One candidate for this effect is $\beta$-BCP. Thus, the peptides which elicit egg laying may also serve other functions such as the inhibition of defensive reflexes. In addition, these experiments raise the possibility that BCPs may exert a long lasting effect ($>$24 hr), suppressing long-term sensitization of the tail-siphon withdrawal reflex. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. This study was planned at a time when important questions were being raised about the adequacy of using one hormone to treat hypothyroidism instead of two. Specifically, this trial aimed to replicate prior findings which suggested that substituting 12.5 μg of liothyronine for 50 μg of levothyroxine might improve mood, cognition, and physical symptoms. Additionally, this trial aimed to extend findings to fatigue. ^ Methods. A randomized, double-blind, two-period, crossover design was used. Hypothyroid patients stabilized on levothyroxine were invited to participate. Thirty subjects were recruited and randomized. Sequence one received their standard levothyroxine dose in one capsule and placebo in another during the first six weeks. Sequence two received their usual levothyroxine dose minus 50 μg in one capsule and 10 μg of liothyronine in another. At the end of the first six week period, subjects were crossed over. T tests were used to assess carry-over and treatment effects. ^ Results. Twenty-seven subjects completed the trial. The majority of completers had an autoimmune etiology. Mean baseline levothyroxine dose was 121 μg/d (±26.0). Subjects reported small increases in fatigue as measured by the Piper Fatigue Scale (0.9, p = 0.09) and in symptoms of depression measured by the Beck Depression Inventory-II (2.3, p = 0.16) as well as the General Health Questionnaire-30 (4.7, p = 0.14) while treated with substitution treatment. However, none of these differences was statistically significant. Measures of working memory were essentially unchanged between treatments. Thyroid stimulating hormone was about twice as high during substitution treatment (p = 0.16). Free thyroxine index was reduced by 0.7 (p < 0.001), and total serum thyroxine was reduced by 3.0 (p < 0.001) while serum triiodothyronine was increased by 20.5 (p < 0.001) on substitution treatment. ^ Conclusions. Substituting an equivalent amount of liothyronine for a portion of levothyroxine in patients with hypothyroidism does not decrease fatigue, symptoms of depression, or improve working memory. However, due to changes in serum hormone levels and small increments in fatigue and depression symptoms on substitution treatment, a question was raised about the role of T3 in the serum. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effects of skipping breakfast on selected aspects of children's cognition, specifically their memory (both immediate and one week following presentation of stimuli), mental tempo, and problem solving accuracy. Test instruments used included the Hagen Central/Incidental Recall Test, Matching Familiar Figures Test, McCarthy Digit Span and Tapping Tests. The study population consisted of 39 nine-to eleven year old healthy children who were admitted for overnight stays at a clinical research setting for two nights approximately one week apart. The study was designed to be able to adequately monitor and control subjects' food consumption. The design chosen was the cross-over design where randomly on either the first or second visit, the child skipped breakfast. In this way, subjects acted as their own controls. Subjects were tested at noon of both visits, this representing an 18-hour fast.^ Analysis focused on whether or not fasting for this period of time affected an individual's performance. Results indicated that for most of the tests, subjects were not significantly affected by skipping breakfast for one morning. However, on tests of short-term central and incidental recall, subjects who had skipped breakfast recalled significantly more of the incidental cues although they did so at no apparent expense to their storing of central information. In the area of problem-solving accuracy, subjects skipping breakfast at time two made significantly more errors on hard sections of the MFF Test. It should be noted that although a large number of tests were conducted, these two tests showed the only significant differences.^ These significant results in the areas of short-term incidental memory and in problem solving accuracy were interpreted as being an effect of subject fatigue. That is, when subjects missed breakfast, they were more likely to become fatigued and in the novel environment presented in the study setting, it is probable that these subjects responded by entering Class II fatigue which is characterized by behavioral excitability, diffused attention and altered performance patterns. ^