5 resultados para medical images
em DigitalCommons@The Texas Medical Center
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.
Resumo:
BACKGROUND: Given the fragmentation of outpatient care, timely follow-up of abnormal diagnostic imaging results remains a challenge. We hypothesized that an electronic medical record (EMR) that facilitates the transmission and availability of critical imaging results through either automated notification (alerting) or direct access to the primary report would eliminate this problem. METHODS: We studied critical imaging alert notifications in the outpatient setting of a tertiary care Department of Veterans Affairs facility from November 2007 to June 2008. Tracking software determined whether the alert was acknowledged (ie, health care practitioner/provider [HCP] opened the message for viewing) within 2 weeks of transmission; acknowledged alerts were considered read. We reviewed medical records and contacted HCPs to determine timely follow-up actions (eg, ordering a follow-up test or consultation) within 4 weeks of transmission. Multivariable logistic regression models accounting for clustering effect by HCPs analyzed predictors for 2 outcomes: lack of acknowledgment and lack of timely follow-up. RESULTS: Of 123 638 studies (including radiographs, computed tomographic scans, ultrasonograms, magnetic resonance images, and mammograms), 1196 images (0.97%) generated alerts; 217 (18.1%) of these were unacknowledged. Alerts had a higher risk of being unacknowledged when the ordering HCPs were trainees (odds ratio [OR], 5.58; 95% confidence interval [CI], 2.86-10.89) and when dual-alert (>1 HCP alerted) as opposed to single-alert communication was used (OR, 2.02; 95% CI, 1.22-3.36). Timely follow-up was lacking in 92 (7.7% of all alerts) and was similar for acknowledged and unacknowledged alerts (7.3% vs 9.7%; P = .22). Risk for lack of timely follow-up was higher with dual-alert communication (OR, 1.99; 95% CI, 1.06-3.48) but lower when additional verbal communication was used by the radiologist (OR, 0.12; 95% CI, 0.04-0.38). Nearly all abnormal results lacking timely follow-up at 4 weeks were eventually found to have measurable clinical impact in terms of further diagnostic testing or treatment. CONCLUSIONS: Critical imaging results may not receive timely follow-up actions even when HCPs receive and read results in an advanced, integrated electronic medical record system. A multidisciplinary approach is needed to improve patient safety in this area.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^