4 resultados para maturation stage

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: Safe and successful oral feeding requires proper maturation of sucking, swallowing and respiration. We hypothesized that oral feeding difficulties result from different temporal development of the musculatures implicated in these functions. METHODS: Sixteen medically stable preterm infants (26 to 29 weeks gestation, GA) were recruited. Specific feeding skills were monitored as indirect markers for the maturational process of oral feeding musculatures: rate of milk intake (mL/min); percent milk leakage (lip seal); sucking stage, rate (#/s) and suction/expression ratio; suction amplitude (mmHg), rate and slope (mmHg/s); sucking/swallowing ratio; percent occurrence of swallows at specific phases of respiration. Coefficients of variation (COV) were used as indices of functional stability. Infants, born at 26/27- and 28/29-week GA, were at similar postmenstrual ages (PMA) when taking 1-2 and 6-8 oral feedings per day. RESULTS: Over time, feeding efficiency and several skills improved, some decreased and others remained unchanged. Differences in COVs between the two GA groups demonstrated that, despite similar oral feeding outcomes, maturation levels of certain skills differed. CONCLUSIONS: Components of sucking, swallowing, respiration and their coordinated activity matured at different times and rates. Differences in functional stability of particular outcomes confirm that maturation levels depend on infants' gestational rather than PMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While prior studies have focused on naïve (CD45RA+CD27+) and early stage memory (CD45RA-CD27+) CD8+ T cells, late memory CD8+ T cells (CD45RA+CD27) have received less interest because this subset of T cells is generally recognized as effectors, which produce IFNγ (but no IL-2) and perforin. However, multiple studies suggest that late memory CD8+ T cells may provide inadequate protection in infectious diseases and cancer models. To better understand the unique function of late memory CD8+ T cells, I optimized multi-color flow cytometry techniques to assess the cytokine production of each human CD8+ T cell maturation subset. I demonstrated that late memory CD8+ T cells are the predominant producer of CC chemokines (e.g. MIP-1β), but rarely produce IL-2; therefore they do not co-produce IL-2/IFNγ (polyfunctionality), which has been shown to be critical for protective immunity against chronic viral infection. These data suggest that late memory CD8+ T cells are not just cytotoxic effectors, but may have unique functional properties. Determining the molecular signature of each CD8+ T cell maturation subset will help characterize the role of late memory CD8+ T cells. Prior studies suggest that ERK1 and ERK2 play a role in cytokine production including IL-2 in T cells. Therefore, I tested whether differential expression of ERK1 and ERK2 in CD8+ T cell maturation subsets contributes to their functional signature by a novel flow cytometry technique. I found that the expression of total ERK1, but not ERK2, is significantly diminished in late memory CD8+ T cells and that ERK1 expression is strongly associated with IL-2 production and CD28 expression. I also found that IL-2 production is increased in late memory CD8+ T cells by over-expressing ERK1. Collectively, these data suggest that ERK1 is required for IL-2 production in human CD8+ T cells. In summary, this dissertation demonstrated that ERK1 is down-regulated in human late memory CD8+ T cells, leading to decreased production of IL-2. The data in this dissertation also suggested that the functional heterogeneity in human CD8+ T cell maturation subsets results from their differential ERK1 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study described the relationship of sexual maturation and blood pressure in a sample (n = 361) of white females, ages seven through 18, attending public schools in a defined area of Central Texas during October through December, 1984. Other correlates of blood pressure were also described for this sample.^ A survey was performed to obtain the data on height, weight, body mass, pulse rate, upper arm circumference and length, and blood pressure. Each subject self-assessed her secondary sex characteristics (breast and pubic hair) according to drawings of the Tanner stages of maturation. The subjects were interviewed to obtain data on personal health habits and menstrual status. Student age, ethnic group and place of residence were abstracted from school records. Parents or guardians of the subjects responded to a questionnaire pertaining to parental and subject health history and parents' occupation and educational attainment.^ In the simple linear regression analysis, sexual maturation and variables of body size were significantly (p < 0.001) and positively associated with systolic and fourth- and fifth-phase diastolic blood pressure. The demographic and socioeconomic variables were not sufficiently variant in this population to have differential effects on the relation between blood pressure and maturation. Stepwise multiple regression was used to assess the contribution of sexual maturation to the variance of blood pressure after accounting for the variables of body size. Sexual maturation (breast stage) along with weight, height and body mass remained in the multiple regression models for fourth- and fifth-phase diastolic blood pressure. Only height and body mass remained in the regression model for systolic blood pressure; sexual maturation did not contribute more to the explanation of the systolic blood pressure variance.^ The association of sexual maturation with blood pressure level was established in this sample of young white females. More research is needed first, to determine if this relationship prevails in other populations of young females, and second, to determine the relationship of sexual maturation sequence and change with the change of blood pressure during childhood and adolescence. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^