22 resultados para lymphocyte T CD4
em DigitalCommons@The Texas Medical Center
Resumo:
Disseminated MAC (dMAC) is the third most prevalent opportunistic infection in AIDS patients. In order to understand the role MAC infection plays in affecting survival of AIDS patients, a cohort of 203 suspected dMAC veterans seen at the Houston Veterans Affairs Medical Center between August 14, 1987 and December 31, 1991 were analyzed. The criteria for suspected dMAC infection was HIV+ men having a CD4+ level $\le$200 cells/mm$\sp3,$ on zidovudine treatment $\ge$1 month and who had any of the following: (a) a confirmed respiratory MAC infection, (b) fever $\ge$101$\sp\circ\rm F$ for $\ge$48 hours, (c) unexplained weight loss of 10 lbs or $\ge$10% BW over 3 months or (d) Hgb $\le$7.5 g/dl or decrease in Hgb $\ge$3.0 g/dl, while on 500-600 mg/day AZT. The study was conducted before the commencement of an effective MAC anti-mycobacterial therapy, so the true course of MAC infection was seen without the confounder of a therapeutic regimen. Kaplan-Meier and Cox regression survival analysis was used to compare 45 MAC culture positive and 118 MAC culture negative veterans. The 1 year survival rate of veterans with documented dMAC infection was 0.37 compared to 0.50 for veterans not acquiring dMAC infection. Significant differences between subgroups were also seen with the variables: PCP prophylaxis, the AIDS indicator disease Candida esophagitis, CD4+ lymphocyte level, CD4 percent lymphocyte level, WBC level, Hgb and Hct levels. Using multivariate modeling, it was determined that PCP prophylaxis (RR = 6.12, CI 2.24-16.68) was a predictor of survival and both CD4% lymphocytes $\le$6.0% (RR = 0.33, CI 0.17-0.68) and WBC level $\le$3000 cells/mm$\sp3$ (RR = 0.60, CI 0.39-0.93) were predictors of mortality. CD4+ level $\le$50 cells/mm$\sp3$ was not a significant predictor of mortality. Although MAC culture status was a significant predictor of mortality in the univariate model, a positive dMAC culture was not a significant predictor of AIDS mortality in the multivariate model. A positive dMAC culture, however, did affect mortality in a stratified analysis when baseline laboratory values were: CD8+ lymphocytes $>$600 cells/mm$\sp3,$ Hgb $>$11.0 g/dl, Hct $>$31.0% and WBC level $>$3000 cells/mm$\sp3.$ ^
Resumo:
Purpose. This project was designed to describe the association between wasting and CD4 cell counts in HIV-infected men in order to better understand the role of wasting in progression of HIV infection.^ Methods. Baseline and prevalence data were collected from a cross-sectional survey of 278 HIV-infected men seen at the Houston Veterans Affairs Medical Center Special Medicine Clinic, from June 1, 1991 to January 1, 1994. A follow-up study was conducted among those at risk, to investigate the incidence of wasting and the association between wasting and low CD4 cell counts. Wasting was described by four methods. Z-scores for age-, sex-, and height-adjusted weight; sex-, and age-adjusted mid-arm muscle circumference (MAMC); and fat-free mass; and the ratio of extra-cellular mass (ECM) to body-cell mass (BCM) $>$ 1.20. FFM, ECM, and BCM were estimated from bioelectrical impedance analysis. MAMC was calculated from triceps skinfold and mid-arm circumference. The relationship between wasting and covariates was examined with logistic regression in the cross-sectional study, and with Poisson regression in the follow-up study. The association between death and wasting was examined with Cox's regression.^ Results. The prevalence of wasting ranged from 5% (weight and ECM:BCM) to almost 14% (MAMC and FFM) among the 278 men examined. The odds of wasting, associated with baseline CD4 cell count $<$200, was significant for each method but weight, and ranged from 4.6 to 12.7. Use of antiviral therapy was significantly protective of MAMC, FFM and ECM:BCM (OR $\approx$ 0.2), whereas the need for antibacterial therapy was a risk (OR 3.1, 95% CI 1.1-8.7). The average incidence of wasting ranged from 4 to 16 per 100 person-years among the approximately 145 men followed for 160 person-years. Low CD4 cell count seemed to increase the risk of wasting, but statistical significance was not reached. The effect of the small sample size on the power to detect a significant association should be considered. Wasting, by MAMC and FFM, was significantly associated with death, after adjusting for baseline serum albumin concentration and CD4 cell count.^ Conclusions. Wasting by MAMC and FFM were strongly associated with baseline CD4 cell counts in both the prevalence and incidence study and strong predictors of death. Of the two methods, MAMC is convenient, has available reference population data, may be the most appropriate for assessing the nutritional status of HIV-infected men. ^
Resumo:
Carcinoma of the cervix is causally related to infection with the human papillomavirus (HPV), and T cells play a pivotal role in the immune response of the host to rid itself of HPV infection. Therefore, we assessed the T-cell function of women with HPV-related cervical neoplasia against a superantigen, Staphylococcus enterotoxin B (SEB). Each woman provided a cervical brush specimen for HPV DNA testing and Papanicolaou (Pap) smears for the staging of cervical lesions. They also provided a blood specimen for determination of the ability of CD4(+) T and CD8(+) T cells to synthesize Th1 (interleukin-2 [IL-2], gamma interferon [IFN-gamma], and tumor necrosis factor alpha [TNF-alpha]) and Th2 (IL-10) cytokines in response to activation with SEB. Compared with control subjects with self-attested negative Pap smears, women with high-grade squamous intraepithelial lesions (HSIL) had significantly lower percentages of activated CD4(+) T cells that produced IL-2 (P = 0.045), IFN-gamma (P = 0.040), and TNF-alpha (P = 0.015) and a significantly lower percentage of activated CD8(+) T cells that produced IL-2 (P < 0.01). These data indicate that women with HPV-related cervical HSIL show a decrease in Th1 cytokine production by activated CD4(+) T cells and suggested that compromised T-helper functions may negatively impact the function of cytotoxic CD8(+) T cells.
Resumo:
We have investigated the in vivo safety, efficacy, and persistence of autologous Epstein Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) for the treatment of solid organ transplant (SOT) recipients at high risk for EBV-associated posttransplantation lymphoproliferative disease (PTLD). EBV-CTLs generated from 35 patients expanded with normal kinetics contained both CD8 and CD4 lymphocytes and produced significant specific killing of autologous EBV-transformed B lymphoblastoid cell lines (LCLs). Twelve SOT recipients at high risk for PTLD, or with active disease, received autologous CTL infusions without toxicity. Real-time polymerase chain reaction (PCR) monitoring of EBV-DNA showed a transient increase in plasma EBV-DNA suggestive of lysis of EBV-infected cells, although there was no consistent decrease in virus load in peripheral-blood mononuclear cells. Interferon-gamma enzyme-linked immunospot (ELISPOT) assay and tetramer analysis showed an increase in the frequency of EBV-responsive T cells, which returned to preinfusion levels after 2 to 6 months. None of the treated patients developed PTLD. One patient with liver PTLD showed a complete response, and one with ocular disease has had a partial response stable for over one year. These data are consistent with an expansion and persistence of adoptively transferred EBV-CTLs that is limited in the presence of continued immunosuppression but that nonetheless produces clinically useful antiviral activity.
Resumo:
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^
Resumo:
Immune dysfunction is encountered during spaceflight. Various aspects of spaceflight, including microgravity, cosmic radiation, and both physiological and psychological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. Clinostatic RWV bioreactors that simulate aspects of microgravity were used to analyze the response of human PBMC to polyclonal and oligoclonal activation. PHA responsiveness in the RWV bioreactor was almost completely diminished. IL-2 and IFN-$\gamma$ secretion was reduced whereas IL-1$\beta$ and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Antigen specific T cell activation, including the mixed-lymphocyte reaction, tetanus toxoid responsiveness, and Borrelia activation of a specific T cell line, was also suppressed in the RWV bioreactor.^ The role of altered culture conditions in the suppression of T cell activation were considered. Potential reduced cell-cell and cell-substratum interactions in the RWV bioreactor may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions was not affected. Furthermore, increasing cell-population density, and therefore cell-cell interactions, in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Finally, activation of purified T cells with crosslinked CD2/CD28 or CD3/CD28 antibody pairs, which does not require costimulation through cell-cell contact, was completely suppressed in the RWV bioreactor suggesting a defect internal to the T cell.^ Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation in simulated microgravity, there is a specific dysfunction within the T cell involving the signaling pathways upstream of PKC activation. ^
Resumo:
Integrin adhesion molecules have both positive and negative potential in the regulation of peripheral blood T cell (PB T cell) activation, yet their mechanism of action in the mediation of human T lymphocyte function remains largely undefined. The goals of this study then were to elucidate integrin signaling mechanisms in PB T cells.^ By ligating $\beta$1 integrins with mAb 18D3, it was demonstrated that costimulation of PB T cell proliferation induced by coimmobilizing antibodies specific for $\beta$1, $\beta$2, and $\beta$7 integrin subfamilies in conjunction with the anti-CD3 mAb OKT3 was inhibited. Costimulation of T cell proliferation induced by non-integrins CD4, CD26, CD28, CD44, CD45RA, or CD45RO was unaffected. Inhibition of costimulation correlated with diminished IL-2 production. In his manner, $\beta$1 integrins could regulate heterologous integrins of the $\beta$2 and $\beta$7 subfamilies in a transdominant fashion. It was also demonstrated that integrin costimulation of T cell activation was acutely sensitive to the structural conformation of $\beta$1 integrins. Using the cyclic hexapeptide CWLDVC (TBC772, which is based on the $\alpha4\beta1$ integrin binding site in fibronectin) in soluble form, it was shown that integrins locked into a conformation displaying a neo-epitope called the ligand induced binding site (LIBS) recognized by mAb 15/7 were inhibited from sending mitogenic signals to T cells. When BSA-conjugated TBC772 was coimmobilized with anti-CD3 mAb OKT3, costimulation of proliferation occurred. This suggested that temporally uncoupling integrin receptor occupancy from receptor crosslinking inhibited $\beta$1 integrin signaling mechanisms. When subsets of PB T cells were examined to determine those initially activated by integrins within 6 hours of activation, costimulation induced intracellular accumulation of IL-2 predominantly in the CD4$\sp+$ and CD45RO$\sp+$ T cell subsets. This was similar to a number of PB T cell costimulatory molecules including CD26, CD43, CD44. Only CD28 costimulated IL-2 production from both CD45RA$\sp+$ and CD45RO$\sp+$ subpopulations.^ The GTPase Rho has been implicated in regulating integrin mediated stress fiber formation and anchorage dependent growth in fibroblasts, so studies were initiated to determine if Rho played a role in integrin dependent T cell function. In order to perform this, a technique based on scrape-loading was developed to incorporate macromolecules into PB T cells that maintained their functional activity. With this technique, C3 exoenzyme from Clostridium botulinum was incorporated into PB T cells. C3 ADP-ribosylates Rho proteins on Asn$\sp{41},$ which is in close proximity to the Rho effector domain, rendering it inactive. It was demonstrated that functional Rho is not required for basal or upregulated PB T cell adhesion to $\beta$1 integrin substrates, however PB T cell homotypic aggregation induced by PMA, which is an event mediated predominantly by the integrin $\rm\alpha L\beta2,$ was delayed. PB T cells lacking Rho function displayed altered cell morphology on $\beta$1 integrin ligands, producing stellate, dendritic-like pseudopodia. Rho activity was also found to be required for integrin dependent costimulation of proliferation. When intracellular accumulation of IL-2 was measured, inactivation of Rho prevented both integrin and CD28 costimulatory activity. Rho was identified to lie upstream of signals mediating PKC activation and Ca$\sp{++}$ fluxes, as PMA and ionomycin activation of PB T cells was unaffected by the inactivation of Rho. ^
Resumo:
In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand mediated outside-in signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that inside-out signaling for the integrin 41 proceeds through phosphatidylinositol specific PLC and PKC, while the outside-in signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, 1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, 41 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the 41 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^
Resumo:
Epstein-Barr virus is a herpes virus distinguished by its remarkable specificity for the B lymphocyte of humans and certain other primates. Although the transformation process is very efficient, is has become clear that only a fraction of B lymphocytes is susceptible. Therefore the question may be raised if transformation is related to B cell stage of activation. B cells were purified from peripheral blood mononuclear cells by the removal of monocytes using elutriation and sheep red blood cell rosetting to remove T cells. Retesting B cells were purified using discontinuous Percoll gradients. Activation of resting cells for 24 hours with anti-mu or Staphylococcus aureus Cowan I (SAC) resulted in transition of susceptible cells into the G(,1) phase of the cell cycle as shown by an increase in cell size, an increase in uridine incorporation and an increase in sensitivity to B cell growth factor (BCGF). Entry into S phase was achieved by extending the period of activation to 48-96 hr as shown by an increase in thymidine incorporation. By this criterion, SAC activated cells entered S phase on day 2 and anti-mu treated cells on day 3. Control (G(,0)) cells and cells activated for varying lengths of time (G(,1), G(,1) plus S) were exposed to EBV and plated in a limiting dilution assay to determine the frequency of EBV-transformable cells. Control cells and cells activated for 24 hr had a precursor frequency of 1% to 2%. With continued activation, however, precursor frequency decreased as a function of the duration of activation. The decrease in frequency of transformable cells correlated with the entry of the population into S phase. The transformation frequency in the SAC-treated population was reduced twenty-fold on day 4, whereas in the anti-mu treated population it was reduced ten-fold. Treating cells with BCGF in conjunction with low concentrations of anti-mu decreased the transformation frequency to levels lower than anti-mu alone, further suggesting that entry into S phase is accompanied by a reduction in transformability. These results indicate that resting B cells are highly susceptible to transformation and that with in vitro activation into the cell cycle B cells become progressively insensitive to EBV. ^
Resumo:
This research characterized a serologically indistinguishable form of HLA-DR1 that: (1) cannot stimulate some DR1-restricted or specific T-lymphocyte clones; (2) displays an unusual electrophoretic pattern on two dimensional gels; and (3) is marked by a polymorphic restriction site of the alpha gene. Inefficient stimulation of some DR1-restricted clones was a property of DR1$\sp{+}$ cells that shared HLA-B14 on the same haplotype and/or were carriers of 21-hydroxylase (21-OH) deficiency. Nonclassical 21-OH deficiency frequently demonstrates genetic linkage with HLA-B14;DR1 haplotypes and associates with duplications of C4B and one 21-OH gene. Cells having both stimulatory (DR1$\sb{\rm n}$) and nonstimulatory (DR1$\sb{\rm x}$) parental haplotypes did not mediate proliferation of these clones. However, heterozygous DR1$\sb{\rm x}$, 2 and DR1$\sb{\rm x}$, 7 cells were efficient stimulators of DR2 and DR7 specific clones, respectively, suggesting that a trans acting factor may modify DR1 alleles or products to yield a dominant DR1$\sb{\rm x}$ phenotype. Incompetent stimulator populations did not secrete an intercellular soluble or contact dependent suppressor factor nor did they express interleukin-2 receptors competing for T-cell growth factors. Two dimensional gel analysis of anti-DR immunoprecipitates revealed, in addition to normal DR$\alpha$ and DR$\beta$ chains, a 50kD species from DR1$\sb{\rm x}$ but not from the majority of DR1$\sb{\rm n}$ or non-DR1 cells. The 50kD structure was stable under reducing conditions in SDS and urea, had antigenic homology with DR, and dissociated after boiling into 34kD and 28kD peptide chains apparently identical with DR$\alpha$ and DR$\beta$ as shown by limited digest peptide maps. N-linked glycosylation and sialation of DRgp50 appeared to be unchanged from normal DR$\alpha$ and DR$\beta$. Bg1II digestion and $DR\alpha$ probing of DR1$\sb{\rm x}$ genomic DNA revealed a 4.5kb fragment while DR1$\sb{\rm n}$ DNA yielded 3.8 and 0.76kb fragments; all restriction sites mapped to the 3$\sp\prime$ untranslated region of $DR\alpha$. Collectively, these data suggest that DRgp50 represents a novel combinatorial association between constitutive chains of DR that may interfere with or compete for normal T cell receptor recognition of DR1 as both an alloantigen and restricting element. Furthermore, extensive chromosomal abnormalities previously mapped to the class III region of B14;DR1 haplotypes may extend into the adjacent class II region with consequent intrusion on immune function. ^
Resumo:
A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^
Resumo:
We have recently reported that psychological stress is associated with a shift in the human type-1/type-2 cytokine balance toward a type-2 cytokine response. The mechanisms of these cytokine alterations are unknown, but likely involve glucocorticoid (GC) modulation of cytokine production. Therefore we sought to characterize the effects of GC on the in vitro human type-1/type-2 cytokine balance. We hypothesized that GC induce a type-2 cytokine shift through modulation of critical regulatory cytokines and alterations in the CD28/B7 costimulatory pathway. ^ We first sought to characterize the effect of the GC, dexamethasone (DEX), on type-1 (IFN-, IL-12) and type-2 (IL-4, IL-10) cytokine production by human peripheral blood mononuclear blood cells (pBMC) stimulated with a variety of T-lymphocyte and monocyte stimuli. DEX, at concentrations mimicking stress and supraphysiologic levels of cortisol, decreased IFN- and IL-12 production and increased IL-4 and IL-10 production, indicating a shift in the type-1/type-2 cytokine balance toward a type-2 response. Furthermore, both CD4+ and CD8+ T-lymphocytes were susceptible to the cytokine modulating effects of DEX. Furthermore, in the absence of the monocyte, the DEX-induced alterations in T-lymphocyte cytokine production were reduced, indicating that the interaction between the monocyte and T-lymphocyte plays a significant role. ^ We next determined the role of regulatory cytokines, known to modulate the type-1/type-2 cytokine balance, in the DEX-induced cytokine alterations. The addition of the recombinant IL-12p70 and IFN-, but not the neutralization of IL-4, IL-10 or IL-13 using monoclonal antibodies, attenuated the DEX-induced type-1/type-2 cytokine alterations. These data suggest that the DEX-induced cytokine alterations are mediated, at least in part, through the initial inhibition type-1 cytokines. Lastly, we investigated the role of the CD28/B7 costimulatory pathway in these cytokine alterations. DEX decreased the expression of CD80 and CD86 on THP-1 cells, a monocyte cell line, and the expression of CD28 and CTLA-4 on PHA-stimulated pBMC. The DEX-induced decrease in CD28 and CTLA-4 expression was attenuated by rhIL-12. Finally, CD28 activation attenuated the DEX-induced decrease in IFN- production, suggesting that modulation of the CD28/B7 costimulatory pathway may contribute to the DEX-induced type-1/type-2 cytokine alterations. ^