4 resultados para liquidity ratios
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.
Resumo:
Haldane (1935) developed a method for estimating the male-to-female ratio of mutation rate ($\alpha$) by using sex-linked recessive genetic disease, but in six different studies using hemophilia A data the estimates of $\alpha$ varied from 1.2 to 29.3. Direct genomic sequencing is a better approach, but it is laborious and not readily applicable to non-human organisms. To study the sex ratios of mutation rate in various mammals, I used an indirect method proposed by Miyata et al. (1987). This method takes advantage of the fact that different chromosomes segregate differently between males and females, and uses the ratios of mutation rate in sequences on different chromosomes to estimate the male-to-female ratio of mutation rate. I sequenced the last intron of ZFX and ZFY genes in 6 species of primates and 2 species of rodents; I also sequenced the partial genomic sequence of the Ube1x and Ube1y genes of mice and rats. The purposes of my study in addition to estimation of $\alpha$'s in different mammalian species, are to test the hypothesis that most mutations are replication dependent and to examine the generation-time effect on $\alpha$. The $\alpha$ value estimated from the ZFX and ZFY introns of the six primate specise is ${\sim}$6. This estimate is the same as an earlier estimate using only 4 species of primates, but the 95% confidence interval has been reduced from (2, 84) to (2, 33). The estimate of $\alpha$ in the rodents obtained from Zfx and Zfy introns is ${\sim}$1.9, and that deriving from Ube1x and Ube1y introns is ${\sim}$2. Both estimates have a 95% confidence interval from 1 to 3. These two estimates are very close to each other, but are only one-third of that of the primates, suggesting a generation-time effect on $\alpha$. An $\alpha$ of 6 in primates and 2 in rodents are close to the estimates of the male-to-female ratio of the number of germ-cell divisions per generation in humans and mice, which are 6 and 2, respectively, assuming the generation time in humans is 20 years and that in mice is 5 months. These findings suggest that errors during germ-cell DNA replication are the primary source of mutation and that $\alpha$ decreases with decreasing length of generation time. ^
Resumo:
Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^
Resumo:
In light of the new healthcare regulations, hospitals are increasingly reevaluating their IT integration strategies to meet expanded healthcare information exchange requirements. Nevertheless, hospital executives do not have all the information they need to differentiate between the available strategies and recognize what may better fit their organizational needs. ^ In the interest of providing the desired information, this study explored the relationships between hospital financial performance, integration strategy selection, and strategy change. The integration strategies examined – applied as binary logistic regression dependent variables and in the order from most to least integrated – were Single-Vendor (SV), Best-of-Suite (BoS), and Best-of-Breed (BoB). In addition, the financial measurements adopted as independent variables for the models were two administrative labor efficiency and six industry standard financial ratios designed to provide a broad proxy of hospital financial performance. Furthermore, descriptive statistical analyses were carried out to evaluate recent trends in hospital integration strategy change. Overall six research questions were proposed for this study. ^ The first research question sought to answer if financial performance was related to the selection of integration strategies. The next questions, however, explored whether hospitals were more likely to change strategies or remain the same when there was no external stimulus to change, and if they did change, they would prefer strategies closer to the existing ones. These were followed by a question that inquired if financial performance was also related to strategy change. Nevertheless, rounding up the questions, the last two probed if the new Health Information Technology for Economic and Clinical Health (HITECH) Act had any impact on the frequency and direction of strategy change. ^ The results confirmed that financial performance is related to both IT integration strategy selection and strategy change, while concurred with prior studies that suggested hospital and environmental characteristics are associated factors as well. Specifically this study noted that the most integrated SV strategy is related to increased administrative labor efficiency and the hybrid BoS strategy is associated with improved financial health (based on operating margin and equity financing ratios). On the other hand, no financial indicators were found to be related to the least integrated BoB strategy, except for short-term liquidity (current ratio) when involving strategy change. ^ Ultimately, this study concluded that when making IT integration strategy decisions hospitals closely follow the resource dependence view of minimizing uncertainty. As each integration strategy may favor certain organizational characteristics, hospitals traditionally preferred not to make strategy changes and when they did, they selected strategies that were more closely related to the existing ones. However, as new regulations further heighten revenue uncertainty while require increased information integration, moving forward, as evidence already suggests a growing trend of organizations shifting towards more integrated strategies, hospitals may be more limited in their strategy selection choices.^