4 resultados para least weighted squares

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely acknowledged in theoretical and empirical literature that social relationships, comprising of structural measures (social networks) and functional measures (perceived social support) have an undeniable effect on health outcomes. However, the actual mechanism of this effect has yet to be clearly understood or explicated. In addition, comorbidity is found to adversely affect social relationships and health related quality of life (a valued outcome measure in cancer patients and survivors). ^ This cross sectional study uses selected baseline data (N=3088) from the Women's Healthy Eating and Living (WHEL) study. Lisrel 8.72 was used for the latent variable structural equation modeling. Due to the ordinal nature of the data, Weighted Least Squares (WLS) method of estimation using Asymptotic Distribution Free covariance matrices was chosen for this analysis. The primary exogenous predictor variables are Social Networks and Comorbidity; Perceived Social Support is the endogenous predictor variable. Three dimensions of HRQoL, physical, mental and satisfaction with current quality of life were the outcome variables. ^ This study hypothesizes and tests the mechanism and pathways between comorbidity, social relationships and HRQoL using latent variable structural equation modeling. After testing the measurement models of social networks and perceived social support, a structural model hypothesizing associations between the latent exogenous and endogenous variables was tested. The results of the study after listwise deletion (N=2131) mostly confirmed the hypothesized relationships (TLI, CFI >0.95, RMSEA = 0.05, p=0.15). Comorbidity was adversely associated with all three HRQoL outcomes. Strong ties were negatively associated with perceived social support; social network had a strong positive association with perceived social support, which served as a mediator between social networks and HRQoL. Mental health quality of life was the most adversely affected by the predictor variables. ^ This study is a preliminary look at the integration of structural and functional measures of social relationships, comorbidity and three HRQoL indicators using LVSEM. Developing stronger social networks and forming supportive relationships is beneficial for health outcomes such as HRQoL of cancer survivors. Thus, the medical community treating cancer survivors as well as the survivor's social networks need to be informed and cognizant of these possible relationships. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current statistical methods for estimation of parametric effect sizes from a series of experiments are generally restricted to univariate comparisons of standardized mean differences between two treatments. Multivariate methods are presented for the case in which effect size is a vector of standardized multivariate mean differences and the number of treatment groups is two or more. The proposed methods employ a vector of independent sample means for each response variable that leads to a covariance structure which depends only on correlations among the $p$ responses on each subject. Using weighted least squares theory and the assumption that the observations are from normally distributed populations, multivariate hypotheses analogous to common hypotheses used for testing effect sizes were formulated and tested for treatment effects which are correlated through a common control group, through multiple response variables observed on each subject, or both conditions.^ The asymptotic multivariate distribution for correlated effect sizes is obtained by extending univariate methods for estimating effect sizes which are correlated through common control groups. The joint distribution of vectors of effect sizes (from $p$ responses on each subject) from one treatment and one control group and from several treatment groups sharing a common control group are derived. Methods are given for estimation of linear combinations of effect sizes when certain homogeneity conditions are met, and for estimation of vectors of effect sizes and confidence intervals from $p$ responses on each subject. Computational illustrations are provided using data from studies of effects of electric field exposure on small laboratory animals. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When choosing among models to describe categorical data, the necessity to consider interactions makes selection more difficult. With just four variables, considering all interactions, there are 166 different hierarchical models and many more non-hierarchical models. Two procedures have been developed for categorical data which will produce the "best" subset or subsets of each model size where size refers to the number of effects in the model. Both procedures are patterned after the Leaps and Bounds approach used by Furnival and Wilson for continuous data and do not generally require fitting all models. For hierarchical models, likelihood ratio statistics (G('2)) are computed using iterative proportional fitting and "best" is determined by comparing, among models with the same number of effects, the Pr((chi)(,k)('2) (GREATERTHEQ) G(,ij)('2)) where k is the degrees of freedom for ith model of size j. To fit non-hierarchical as well as hierarchical models, a weighted least squares procedure has been developed.^ The procedures are applied to published occupational data relating to the occurrence of byssinosis. These results are compared to previously published analyses of the same data. Also, the procedures are applied to published data on symptoms in psychiatric patients and again compared to previously published analyses.^ These procedures will make categorical data analysis more accessible to researchers who are not statisticians. The procedures should also encourage more complex exploratory analyses of epidemiologic data and contribute to the development of new hypotheses for study. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^