5 resultados para law of waste

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inefficiencies during the management of healthcare waste can give rise to undesirable health effects such as transmission of infections and environmental pollution within and beyond the health facilities generating these wastes. Factors such as prevalence of diseases, conflicts, and the efflux of intellectual capacity make low income countries more susceptible to these adverse health effects. The purpose of this systematic review was to describe the effectiveness of interventions geared towards better managing the generation, collection, transport, treatment and disposal of medical waste, as they have been applied in lower and middle income countries.^ Using a systematic search strategy and evaluation of study quality, this study reviewed the literature for published studies on healthcare waste management interventions carried out in developing countries, specifically the low and lower middle income countries from year 2000 to the current year. From an initially identified set of 829 studies, only three studies ultimately met all inclusion, exclusion and high quality criteria. A multi component intervention in Syrian Arab Republic, conducted in 2007 was aimed at improving waste segregation practice in a hospital setting. There was an increased use of segregation boxes and reduced rates of sharps injury among staff as a result of the intervention. Another study, conducted in 2008, trained medical students as monitors of waste segregation practice in an Indian teaching hospital. There was improved practice in wards and laboratories but not in the intensive care units. The third study, performed in 2008 in China, consisted of modification of the components of a medical waste incinerator to improve efficiency and reduce stack emissions. Gaseous pollutants emitted, except polychlorodibenzofurans (PCDF) were below US EPA permissible exposure limits. Heavy metal residues in the fly ash remained unchanged.^ Due to the paucity of well-designed studies, there is insufficient evidence in literature to conclude on the effectiveness of interventions in low income settings. There is suggestive but insufficient evident that multi-component interventions aimed at improving waste segregation through behavior modification, provision of segregation tools and training of monitors are effective in low income settings.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spike timing dependent plasticity (STDP) is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in synaptic strength. STDP is often interpreted as the comprehensive learning rule for a synapse - the "first law" of synaptic plasticity. This interpretation is made explicit in theoretical models in which the total plasticity produced by complex spike patterns results from a superposition of the effects of all spike pairs. Although such models are appealing for their simplicity, they can fail dramatically. For example, the measured single-spike learning rule between hippocampal CA3 and CA1 pyramidal neurons does not predict the existence of long-term potentiation one of the best-known forms of synaptic plasticity. Layers of complexity have been added to the basic STDP model to repair predictive failures, but they have been outstripped by experimental data. We propose an alternate first law: neural activity triggers changes in key biochemical intermediates, which act as a more direct trigger of plasticity mechanisms. One particularly successful model uses intracellular calcium as the intermediate and can account for many observed properties of bidirectional plasticity. In this formulation, STDP is not itself the basis for explaining other forms of plasticity, but is instead a consequence of changes in the biochemical intermediate, calcium. Eventually a mechanism-based framework for learning rules should include other messengers, discrete change at individual synapses, spread of plasticity among neighboring synapses, and priming of hidden processes that change a synapse's susceptibility to future change. Mechanism-based models provide a rich framework for the computational representation of synaptic plasticity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Federal Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid (CMS) play key roles in making Class III, medical devices available to the public, and they are required by law to meet statutory deadlines for applications under review. Historically, both agencies have failed to meet their respective statutory requirements. Since these failures affect patient access and may adversely impact public health, Congress has enacted several “modernization” laws. However, the effectiveness of these modernization laws has not been adequately studied or established for Class III medical devices. ^ The aim of this research study was, therefore, to analyze how these modernization laws may have affected public access to medical devices. Two questions were addressed: (1) How have the FDA modernization laws affected the time to approval for medical device premarket approval applications (PMAs)? (2) How has the CMS modernization law affected the time to approval for national coverage decisions (NCDs)? The data for this research study were collected from publicly available databases for the period January 1, 1995, through December 31, 2008. These dates were selected to ensure that a sufficient period of time was captured to measure pre- and post-modernization effects on time to approval. All records containing original PMAs were obtained from the FDA database, and all records containing NCDs were obtained from the CMS database. Source documents, including FDA premarket approval letters and CMS national coverage decision memoranda, were reviewed to obtain additional data not found in the search results. Analyses were conducted to determine the effects of the pre- and post-modernization laws on time to approval. Secondary analyses of FDA subcategories were conducted to uncover any causal factors that might explain differences in time to approval and to compare with the primary trends. The primary analysis showed that the FDA modernization laws of 1997 and 2002 initially reduced PMA time to approval; after the 2002 modernization law, the time to approval began increasing and continued to increase through December 2008. The non-combined, subcategory approval trends were similar to the primary analysis trends. The combined, subcategory analysis showed no clear trends with the exception of non-implantable devices, for which time to approval trended down after 1997. The CMS modernization law of 2003 reduced NCD time to approval, a trend that continued through December 2008. This study also showed that approximately 86% of PMA devices do not receive NCDs. ^ As a result of this research study, recommendations are offered to help resolve statutory non-compliance and access issues, as follows: (1) Authorities should examine underlying causal factors for the observed trends; (2) Process improvements should be made to better coordinate FDA and CMS activities to include sharing data, reducing duplication, and establishing clear criteria for “safe and effective” and “reasonable and necessary”; (3) A common identifier should be established to allow tracking and trending of applications between FDA and CMS databases; (4) Statutory requirements may need to be revised; and (5) An investigation should be undertaken to determine why NCDs are not issued for the majority of PMAs. Any process improvements should be made without creating additional safety risks and adversely impacting public health. Finally, additional studies are needed to fully characterize and better understand the trends identified in this research study.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^