11 resultados para large course design
em DigitalCommons@The Texas Medical Center
Resumo:
Purpose of the study. This study had two components. The first component of the study was the development and implementation of an infrastructure that integrated Promotores who teach diabetes self-management into a community clinic. The second component was a six-month randomized clinical trial (RCT) designed to test the effectiveness of the Promotores in changing knowledge, beliefs, and HbA1c levels among Mexican American patients with type 2 diabetes. ^ Methods. Starfield's adaptation of the Donbedian structure, process, and outcome methodology was used to develop a clinic infrastructure that allowed the integration of Promotores as diabetes educators. The RCT of the culturally sensitive Promotores-led 10-week diabetes self-management program compared the outcomes of 63 patients in the intervention group with 68 patients in a wait-list, usual care control group. Participants were Mexican Americans, at least 18 years of age, with type 2 diabetes, who were patients at a Federally Qualified Health Center on the Texas-Mexico border. At baseline, three months, and six months, data were collected using the Diabetes Knowledge Questionnaire (DKQ, the Health Beliefs Questionnaire (HBQ, and HbA1c levels were drawn by the clinic laboratory. A mixed model methodology was used to analyze the data. ^ Results. The infrastructure to support a Promotores-led diabetes self-management course designed in concert with administration, the physicians, and the CDE, resulted in (1) employment of Promotores to teach diabetes self-management courses; (2) integration of provider and nurse oversight of course design and implementation; (3) management of Promotora training, and the development of teaching competencies and skills; (4) coordination of care through communication and documentation policies and procedures; (5) utilization of quality control mechanisms to maintain patient safety; and (6) promotion of a culturally competent approach to the educational process. The RCT resulted in a significant improvement in the intervention group's DKQ scores over time (F [1, 129] = 4.77, p = 0.0308), and in treatment by time (F [2, 168] = 5.85, p = 0.0035). Neither the HBQ scores nor the HbA1c changed over time. However, the baseline HbA1c was 7.49, almost at the therapeutic level. The DKQ, HBQ, and HbA1c results were significantly affected by age; the DKQ and HbA1c by years with diabetes. ^ Conclusions. The clinic model provides a systematic approach to safely address the educational needs of large numbers of patients with type 2 diabetes who live in communities that suffer from a lack of health care professionals. The Promotores-led diabetes self-management course improved the knowledge of patients with diabetes and may be a culturally sensitive strategy for meeting patient educational needs. The low baseline HbA1c levels in this border community suggested that patients in this Federally Qualified Health Center on the Texas-Mexico border were experiencing good medical management of their diabetes. ^
Resumo:
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.
Resumo:
In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^
Resumo:
Using stress and coping as a unifying theoretical concept, a series of five models was developed in order to synthesize the survey questions and to classify information. These models identified the question, listed the research study, described measurements, listed workplace data, and listed industry and national reference data.^ A set of 38 instrument questions was developed within the five coping correlate categories. In addition, a set of 22 stress symptoms was also developed. The study was conducted within two groups, police and professors, on a large university campus. The groups were selected because their occupations were diverse, but they were a part of the same macroenvironment. The premise was that police officers would be more highly stressed than professors.^ Of a total study group of 80, there were 37 respondents. The difference in the mean stress responses was observable between the two groups. Not only were the responses similar within each group, but the stress level of response was also similar within each group. While the response to the survey instrument was good, only 3 respondents answered the stress symptom survey properly. It was determined that none of the 37 respondents believed that they were ill. This perception of being well was also evidenced by the grand mean of the stress scores of 2.76 (3.0 = moderate stress). This also caused fewer independent variables to be entered in the multiple regression model.^ The survey instrument was carefully designed to be universal. Universality is the ability to transcend occupational or regional definitions as applied to stress. It is the ability to measure responses within broad categories such as physiological, emotional, behavioral, social, and cognitive functions without losing the ability to measure the detail within the individual questions, or the relationships between questions and categories.^ Replication is much easier to achieve with standardized categories, questions, and measurement procedures such as those developed for the universal survey instrument. Because the survey instrument is universal it can be used as an analytical device, an assessment device, a basic tool for planning and a follow-up instrument to measure individual response to planned reductions in occupational stress. (Abstract shortened with permission of author.) ^
Resumo:
Purpose. To provide a descriptive representation of the illness narratives described by Hispanic American women with CHD. ^ Design. Focused ethnographic design. ^ Setting. One outpatient general medicine clinic, one nurse-managed health promotion clinic, and informants' homes in a large metropolitan city located in southeast Texas. ^ Sample. Purposeful sampling from two different sites resulted in 17 interviews being conducted with 14 informants. ^ Method. Focused ethnographic techniques were employed in the designation of participants for the study, data collection, analysis and re-presentation. Audiotaped interviews and fieldwork were transcribed verbatim and analyzed through an iterative process of data reduction, data display, drawing conclusions and verification. ^ Findings. The developing conceptual framework that emerged from the data is labeled after the overarching experience described by informants, the experience of Embodied Exhaustion. Embodied Exhaustion, as described in this study, refers to an ongoing, dynamic, indeterminate experience of mind-body exhaustion resulting from a complex constellation of biologic, psychological and social distresses occurring over the life course. The experience consists of three categories: Taking Care of Others, Wearing Down and Hurting Hearts. Two stabilizing forces were identified: Collective Self and Believing in God. ^ Conclusions. The findings of this study emphasize the importance of framing all research, theory and practice targeting Hispanic women with CHD within a sociocentric paradigm. Nursing is challenged to provide care that extends beyond the physical body of the patient to include the social context of illness, especially the family. ^
Resumo:
In a large health care system, the importance of accurate information as feedback mechanisms about its performance is necessary on many levels from the senior level management to service level managers for valid decision-making purposes. The implementation of dashboards is one way to remedy the problem of data overload by providing up-to-date, accurate, and concise information. As this health care system seeks to have an organized, systematic review mechanism in place, dashboards are being created in a variety of the hospital service departments to monitor performance indicators. The Infection Control Administration of this health care system is one that does not currently utilize a dashboard but seeks to implement one. ^ The purpose of this project is to research and design a clinical dashboard for the Infection Control Administration. The intent is that the implementation and usefulness of the clinical dashboard translates into improvement in the measurement of health care quality.^
Resumo:
Cancer of the oral cavity and pharynx remains one of the ten leading causes of cancer death in the United States (US). Besides smoking and alcohol consumption, there are no well established risk factors. While poor dental care had been implicated, it is unknown if the lack of dental care, implying poor dental hygiene predisposes to oral cavity cancer. This study aimed to assess the relationship between dental care utilization during the past twelve months and the prevalence of oral cavity cancer. A cross-sectional design of the National Health Interview Survey of adult, non-institutionalized US residents (n=30,475) was used to assess the association between dental care utilization and self reported diagnosis of oral cavity cancer. Chi square statistic was used to examine the crude association between the predictor variable, dental care utilization and other covariates, while unconditional logistic regression was used to assess the relationship between oral cavity cancer and dental care utilization. There were statistically significant differences between those who utilized dental care during the past twelve months and those who did not with respect to education, income, age, marital status, and gender (p < 0.05), but not health insurance coverage (p = 0.53). Also, those who utilized dental care relative to those who did not were 65% less likely to present with oral cavity cancer, prevalence odds ratio (POR), 0.35, 95% Confidence Interval (CI), 0.12–0.98. Further, higher income advanced age, people of African heritage, and unmarried status were statistically significantly associated with oral cavity cancer, (p < 0.05), but health insurance coverage, alcohol use and smoking were not, p > 0.05. However, after simultaneously controlling for the relevant covariates, the association between dental care and oral cavity cancer did not attenuate nor persist. Thus, compared with those who did not use dental care, those who did wee 62% less likely to present with oral cavity cancer adjusted POR, 0.38, 95% CI, 0.13-1.10. Among US adults residing in community settings, use of dental care during the past twelve months did not significantly reduce the predisposition to oral cavity cancer. However, due to the nature of the data used in this study, which restricts temporal sequence, a large sample prospective study that may identify modifiable factors associated with oral cancer development namely poor dental care, is needed. ^
Resumo:
High-risk injection drug use and the sexual behaviors that accompany it have large social and financial costs. Tailored treatments have been shown to successfully reduce high-risk behaviors. However, little is known about how age and age at first drug use are related to high-risk injection or sex behaviors. The current study draws on life course theory and hypothesizes that age will have a strong relationship with high-risk behaviors of out-of-treatment drug users. Data from the NIDA Cooperative Agreement was used to analyze the relationship between (1) age, and (2) age at first drug use with seven high-risk injection and sexual behavior variables. Negative binomial regression models revealed that high-risk sexual behavior decreases between 15.8 and 20.9% with each decade of age, while high-risk injection behavior increases between 32 and 67% with each decade of age after the addition of demographic controls. Both high-risk injection and high-risk sex behaviors are significantly reduced with a delayed age at first drug use. Previous research promotes interventions to reduce the high-risk sexual behaviors of older drug users. The current study suggests a refocusing of public health efforts on the high-risk injection habits of older drug users.^
Resumo:
Prostate cancer (CaP) is the most diagnosed non-cutaneous malignancy and the second leading cause of cancer mortality among United States males. Major racial disparities in incidence, survival, as well as treatment persist. The mortality is three times higher among African Americans (AAs) compared with Caucasians. Androgen carcinogenesis has been persistently implicated but results are inconsistent; and hormone manipulation has been the main stay of treatment for metastatic disease, supportive of the androgen carcinogenesis. The survival disadvantage of AAs has been attributed to the differences in socioeconomic factors (SES), tumor stage, and treatment. We hypostasized that HT prolongs survival in CaP and that the racial disparities in survival is influenced by variation in HT and primary therapies as well as SES. To address these overall hypothesis, we first utilized a random-effect meta-analytic design to examine evidence from randomized trials on the efficacy of androgen deprivation therapy in localized and metastatic disease, and assessed, using Cox proportional hazards models, the effectiveness of HT in prolonging survival in a large community-based cohort of older males diagnosed with local/regional CaP. Further we examined the role of HT and primary therapies on the racial disparities in CaP survival. The results indicated that adjuvant HT compared with standard care alone is efficacious in improving overall survival, whereas HT has no significant benefit in the real world experience in increasing the overall survival of older males in the community treated for local/regional disease. Further, racial differences in survival persist and were explained to some extent by the differences in the primary therapies (radical prostatectomy, radiation and watchful waiting) and largely by SES. Therefore, given the increased used of hormonal therapy and the cost-effectiveness today, more RCTs are needed to assess whether or not survival prolongation translates to improved quality of life, and to answer the research question on whether or not the decreased use of radical prostatectomy by AAs is driven by the Clinicians bias or AAs's preference of conservative therapy and to encourage AAs to seek curative therapies, thus narrowing to some degree the persistent mortality disparities between AAs and Caucasians. ^
Resumo:
The study aim was to determine whether using automated side loader (ASL) trucks in higher proportions compared to other types of trucks for residential waste collection results in lower injury rates (from all causes). The primary hypothesis was that the risk of injury to workers was lower for those who work with ASL trucks than for workers who work with other types of trucks used in residential waste collection. To test this hypothesis, data were collected from one of the nation’s largest companies in the solid waste management industry. Different local operating units (i.e. facilities) in the company used different types of trucks to varying degrees, which created a special opportunity to examine refuse collection injuries and illnesses and the risk reduction potential of ASL trucks.^ The study design was ecological and analyzed end-of-year data provided by the company for calendar year 2007. During 2007, there were a total of 345 facilities which provided residential services. Each facility represented one observation.^ The dependent variable – injury and illness rate, was defined as a facility’s total case incidence rate (TCIR) recorded in accordance with federal OSHA requirements for the year 2007. The TCIR is the rate of total recordable injury and illness cases per 100 full-time workers. The independent variable, percent of ASL trucks, was calculated by dividing the number of ASL trucks by the total number of residential trucks at each facility.^ Multiple linear regression models were estimated for the impact of the percent of ASL trucks on TCIR per facility. Adjusted analyses included three covariates: median number of hours worked per week for residential workers; median number of months of work experience for residential workers; and median age of residential workers. All analyses were performed with the statistical software, Stata IC (version 11.0).^ The analyses included three approaches to classifying exposure, percent of ASL trucks. The first approach included two levels of exposure: (1) 0% and (2) >0 - <100%. The second approach included three levels of exposure: (1) 0%, (2) ≥ 1 - < 100%, and (3) 100%. The third approach included six levels of exposure to improve detection of a dose-response relationship: (1) 0%, (2) 1 to <25%, (3) 25 to <50%, (4) 50 to <75%, (5) 75 to <100%, and (6) 100%. None of the relationships between injury and illness rate and percent ASL trucks exposure levels was statistically significant (i.e., p<0.05), even after adjustment for all three covariates.^ In summary, the present study shows that there is some risk reduction impact of ASL trucks but not statistically significant. The covariates demonstrated a varied yet more modest impact on the injury and illness rate but again, none of the relationships between injury and illness rate and the covariates were statistically significant (i.e., p<0.05). However, as an ecological study, the present study also has the limitations inherent in such designs and warrants replication in an individual level cohort design. Any stronger conclusions are not suggested.^
Resumo:
The development of targeted therapy involve many challenges. Our study will address some of the key issues involved in biomarker identification and clinical trial design. In our study, we propose two biomarker selection methods, and then apply them in two different clinical trial designs for targeted therapy development. In particular, we propose a Bayesian two-step lasso procedure for biomarker selection in the proportional hazards model in Chapter 2. In the first step of this strategy, we use the Bayesian group lasso to identify the important marker groups, wherein each group contains the main effect of a single marker and its interactions with treatments. In the second step, we zoom in to select each individual marker and the interactions between markers and treatments in order to identify prognostic or predictive markers using the Bayesian adaptive lasso. In Chapter 3, we propose a Bayesian two-stage adaptive design for targeted therapy development while implementing the variable selection method given in Chapter 2. In Chapter 4, we proposed an alternate frequentist adaptive randomization strategy for situations where a large number of biomarkers need to be incorporated in the study design. We also propose a new adaptive randomization rule, which takes into account the variations associated with the point estimates of survival times. In all of our designs, we seek to identify the key markers that are either prognostic or predictive with respect to treatment. We are going to use extensive simulation to evaluate the operating characteristics of our methods.^