15 resultados para knee injury and Osteoarthritis Outcome Score (KOOS)
em DigitalCommons@The Texas Medical Center
Resumo:
Trauma and severe head injuries are important issues because they are prevalent, because they occur predominantly in the young, and because variations in clinical management may matter. Trauma is the leading cause of death for those under age 40. The focus of this head injury study is to determine if variations in time from the scene of accident to a trauma center hospital makes a difference in patient outcomes.^ A trauma registry is maintained in the Houston-Galveston area and includes all patients admitted to any one of three trauma center hospitals with mild or severe head injuries. A study cohort, derived from the Registry, includes 254 severe head injury cases, for 1980, with a Glasgow Coma Score of 8 or less.^ Multiple influences relate to patient outcomes from severe head injury. Two primary variables and four confounding variables are identified, including time to emergency room, time to intubation, patient age, severity of injury, type of injury and mode of transport to the emergency room. Regression analysis, analysis of variance, and chi-square analysis were the principal statistical methods utilized.^ Analysis indicates that within an urban setting, with a four-hour time span, variations in time to emergency room do not provide any strong influence or predictive value to patient outcome. However, data are suggestive that at longer time periods there is a negative influence on outcomes. Age is influential only when the older group (55-64) is included. Mode of transport (helicopter or ambulance) did not indicate any significant difference in outcome.^ In a multivariate regression model, outcomes are influenced primarily by severity of injury and age which explain 36% (R('2)) of variance. Inclusion of time to emergency room, time to intubation, transport mode and type injury add only 4% (R('2)) additional contribution to explaining variation in patient outcome.^ The research concludes that since the group most at risk to head trauma is the young adult male involved in automobile/motorcycle accidents, more may be gained by modifying driving habits and other preventive measures. Continuous clinical and evaluative research are required to provide updated clinical wisdom in patient management and trauma treatment protocols. A National Institute of Trauma may be required to develop a national public policy and evaluate the many medical, behavioral and social changes required to cope with the country's number 3 killer and the primary killer of young adults.^
Resumo:
Approximately 12,000 new cases of spinal cord injury (SCI) are added each year to the estimated 259,000 Americans living with SCI. The majority of these patients return to society, their lives forever changed by permanent loss of sensory and motor function. While there are no FDA approved drugs for the treatment of SCI or a universally accepted standard therapy, the current though controversial treatment includes the delivery of high dosages of the corticosteroid methyliprednisolone sodium succinate, surgical interventions to stabilize the spinal column, and physical rehabilitation. It is therefore critically important to fully understand the pathology of injury and determine novel courses and rationally-based therapies for SCI. ^ Vascular endothelial growth factor (VEGF) is an attractive target for treating central nervous system (CNS) injury and disease because it has been shown to influence angiogenesis and neuroprotection. Preliminary studies have indicated that increased vasculature may be associated with functional recovery; therefore exogenous delivery of a pro-angiogenic growth factor such as VEGF may improve neurobehavioral outcome. In addition, VEGF may provide protection from secondary injury and result in increased survival and axonal sprouting. ^ In these studies, SCI rats received acute intraspinal injections of VEGF, the antibody to VEGF, or vehicle control. The effect of these various agents was investigated using longitudinalmulti-modal magnetic resonance imaging (MRI), neuro- and sensory behavioral assays, and end point immunohistochemistry. We found that rats that received VEGF after SCI had increased tissue sparing and improved white matter integrity at the earlier time points as shown by advanced magnetic resonance imaging (MRI) techniques. However, these favorable effects of VEGF were not maintained, suggesting that additional treatments with VEGF at multiple time points may be more beneficial, Histological examinations revealed that VEGF treatment may result in increased oligodendrogenesis and therefore may eventually lead to remyelination and improved functional outcome. ^ On the neurobehavioral studies, treatments with VEGF and Anti-VEGF did not significantly affect performance on tests of open-field locomotion, grid walk, inclined plane, or rearing. However, VEGF treatment resulted in significantly increased incidence of chronic neuropathic pain. This phenomenon could possibly be attributed to the fact that VEGF treatment may promote axonal sprouting and also results in tissue sparing, thereby providing a substrate for the growth of new axons. New connections made by these sprouting axons may involve components of pathways involved in the transmission of pain and therefore result in increased pain in those animals. ^
Resumo:
Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are life- threatening disorders that can result from many severe conditions and diseases. Since the American European Consensus Conference established the internationally accepted definition of ALI and ARDS, the epidemiology of pediatric ALI/ARDS has been described in some developed countries. In the developing world, however, there are very few data available regarding the burden, etiologies, management, outcome, and factors associated with outcomes of ALI/ARDS in children. ^ Therefore, we conducted this observational, clinical study to estimate the prevalence and case mortality rate of ALI/ARDS among a cohort of patients admitted to the pediatric intensive care unit (PICU) of the National Hospital of Pediatrics in Hanoi, the largest children's hospital in Vietnam. Etiologies and predisposing factors, and management strategies for pediatric ALI/ARDS were described. In addition, we determined the prevalence of HIV infection among children with ALI/ARDS in Vietnam. We also identified the causes of mortality and predictors of mortality and prolonged mechanical ventilation of children with ALI/ARDS. ^ A total of 1,051 patients consecutively admitted to the pediatric intensive care unit from January 2011 to January 2012 were screened daily for development of ALI/ARDS using the American-European Consensus Conference Guidelines. All identified patients with ALI/ARDS were followed until hospital discharge or death in the hospital. Patients' demographic and clinical data were collected. Multivariable logistic regression models were developed to identify independent predictors of mortality and other adverse outcome of ALI/ARDS. ^ Prevalence of ALI and ARDS was 9.6% (95% confidence interval, 7.8% to 11.4%) and 8.8% (95% confidence interval, 7.0% to 10.5%) of total PICU admissions, respectively. Infectious pneumonia and sepsis were the most common causes of ALI/ARDS accounting for 60.4% and 26.7% of cases, respectively. Prevalence of HIV infection among children with ALI/ARDS was 3.0%. The case fatality rate of ALI/ARDS was 63.4% (95% confidence interval, 53.8% to 72.9%). Multiple organ failure and refractory hypoxemia were the main causes of death. Independent predictors of mortality and prolonged mechanical ventilation were male gender, duration of intensive care stay prior to ALI/ARDS diagnosis, level of oxygenation defect measured by PaO2/FiO2 ratio at ALI/ARDS diagnosis, presence of non-pulmonary organ dysfunction at day one and day three after ALI/ARDS diagnosis, and presence of hospital acquired infection. ^ The results of this study demonstrated that ALI/ARDS was a common and severe condition in children in Vietnam. The level of both pulmonary and non-pulmonary organ damage influenced survival of patients with ALI/ARDS. Strategies for preventing ALI/ARDS and for clinical management of the disease are necessary to reduce the associated risks.^
Resumo:
Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.
Resumo:
Radiation-induced injuries from fluoroscopic procedures in pediatric patients have occurred, and young patients are at greatest risk of many radiation-induced neoplasms. Some fluoroscopists have been injured from their use of fluoroscopy, and they are known to be at risk of radiation-induced neoplasm when radiation is not well-controlled. This article reviews the circumstances that lead to radiation injury and delineates some procedural methods to avoid injury and limit radiation exposure to both the patient and the fluoroscopist.
Resumo:
Intensive Family Preservation Services seek to reflect the values of focusing on client strengths and viewing clients as colleagues. To promote those values, Intensive Family Preservation Programs should include a systematic form of client self monitoring in their packages of outcome measures. This paper presents a model of idiographic self-monitoring used in time series, single system research design developed for Family Partners, a family preservation program of the School for Contemporary Education in Annandale, Virginia. The evaluation model provides a means of empowering client families to utilize their strengths and promote their status as colleague in determining their own goals, participating in the change process, and measuring their own progress.
Resumo:
CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^
Resumo:
This research project is a study in the field of public health to test the relationships of demographic, socioeconomic, behavioral, and biological factors with (1) prenatal care use and (2) pregnancy outcome, measured by birth weight. It has been postulated that demographic, socioeconomic, and behavioral factors are associated with differences in the use of prenatal care services. It has also been postulated that differences in demographic, socioeconomic, behavioral, and biological factors result in differences in birth weight. This research attempts to test these two basic conceptual frameworks. At the same time, an attempt is made to determine the population groups and subgroups that are at increased risk (1) of using fewer prenatal care visits, and (2) of displaying a higher incidence of low birth weight babies. An understanding of these relationships of the demographic, socioeconomic, behavioral, and biological factors in the use of prenatal care visits and pregnancy outcome, measured by birth weight, will potentially offer guidance in the planning and policy development of maternal and child health services. The research considers four major components of maternal characteristics: (1) Demographic factors. Ethnicity, household size, maternal parity, and maternal age; (2) Socioeconomic factors. Maternal education, family income, maternal employment, health insurance coverage, and household dwelling; (3) Behavioral factors. Maternal smoking, attendance at child development classes, mother's first prenatal care visit, total number of prenatal care visits, and adequacy of care; and, (4) Biological factors. Maternal weight gain during pregnancy.^ The research considers 16 independent variables and two dependent variables.^ It was concluded that: (1) Generally, differences in demographic, socioeconomic, and behavioral factors were associated with differences in the average number of prenatal care visits between and within population groups and subgroups. The Hispanic mothers were the lowest users of prenatal care services. (2) In some cases, differences in demographic, socioeconomic, behavioral, and biological factors demonstrated differences in the average birth weight of infants between and within population groups and subgroups. (3) Differences in demographic, socioeconomic, behavioral, and biological factors resulted in differences in the rates of low birth weight babies between and within population groups and subgroups. The Black mothers delivered the highest incidence of low birth weight infants.^ These findings could provide guidance in the formulation of public health policies such as MCH services, an increase in the use of prenatal care services by prospective mothers, resulting in reduction of the incidence of low birth weight babies, and consequently aid in reducing the rates of infant mortality. ^
Resumo:
Knee osteoarthritis (OA) is the most prevalent form of arthritis in the US, affecting approximately 37% of adults. Approximately 300,000 total knee arthroplasty (TKA) procedures take place in the United States each year. Total knee arthroplasty is an elective procedure available to patients as an irreversible treatment after failure of previous medical treatments. Some patients sacrifice quality of life and endure many years of pain before making the decision to undergo total knee replacement. In making their decision, it is therefore imperative for patients to understand the procedure, risks and surgical outcomes to create realistic expectations and increase outcome satisfaction. ^ From 2004-2007, 236 OA patients who underwent TKA participated in the PEAKS (Patient Expectations About Knee Surgery) study, an observational longitudinal cohort study, completed baseline and 6 month follow-up questionnaires after the surgery. We performed a secondary data analysis of the PEAKS study to: (1) determine the specific presurgical patient characteristics associated with patients’ presurgical expectations of time to functional recovery; and (2) determine the association between presurgical expectations of time to functional recovery and postsurgical patient capabilities (6 months after TKA). We utilized the WOMAC to measure knee pain and function, the SF-36 to measure health-related quality of life, and the DASS and MOS-SSS to measure psychosocial quality of life variables. Expectation and capability measures were generated from panel of experts. A list of 10 activities was used for this analysis to measure functional expectations and postoperative functional capabilities. ^ The final cohort consisted of 236 individuals, was predominately White with 154 women and 82 men. The mean age was 65 years. Patients were optimistic about their time to functional recovery. Expectation time of being able to perform the list activities per patient had a median of less than 3 months. Patients who expected to be able to perform the functional activities by 3 months had better knee function, less pain and better overall health-related quality of life. Despite expectation differences, all patients showed significant improvement 6 months after surgery. Participant expectation of time to functional recovery was not an independent predictor of capability to perform functional activities at 6 months. Better presurgical patient characteristics were, however, associated with a higher likelihood of being able to perform all activities at 6 months. ^ This study gave us initial insight on the relationship between presurgical patient characteristics and their expectations of functional recovery after total knee replacement. Future studies clarifying the relationship between patient presurgical characteristics and postsurgical functional capabilities are needed.^
Resumo:
Each year, 150 million people sustain a Traumatic Brain Injury (TBI). TBI results in life-long cognitive impairments for many survivors. One observed pathological alteration following TBI are changes in glucose metabolism. Altered glucose uptake occurs in the periphery as well as in the nervous system, with an acute increase in glucose uptake, followed by a prolonged metabolic suppression. Chronic, persistent suppression of brain glucose uptake occurs in TBI patients experiencing memory loss. Abberant post-injury activation of energy-sensing signaling cascades could result in perturbed cellular metabolism. AMP-activated kinase (AMPK) is a kinase that senses low ATP levels, and promotes efficient cell energy usage. AMPK promotes energy production through increasing glucose uptake via glucose transporter 4 (GLUT4). When AMPK is activated, it phosphorylates Akt Substrate of 160 kDa (AS160), a Rab GTPase activating protein that controls Glut4 translocation. Additionally, AMPK negatively regulates energy-consumption by inhibiting protein synthesis via the mechanistic Target of Rapamycin (mTOR) pathway. Given that metabolic suppression has been observed post-injury, we hypothesized that activity of the AMPK pathway is transiently decreased. As AMPK activation increases energy efficiency of the cell, we proposed that increasing AMPK activity to combat the post-injury energy crisis would improve cognitive outcome. Additionally, we expected that inhibiting AMPK targets would be detrimental. We first investigated the role of an existing state of hyperglycemia on TBI outcome, as hyperglycemia correlates with increased mortality and decreased cognitive outcome in clinical studies. Inducing hyperglycemia had no effect on outcome; however, we discovered that AMPK and AS160 phosphorylation were altered post-injury. We conducted vii work to characterize this period of AMPK suppression and found that AMPK phosphorylation was significantly decreased in the hippocampus and cortex between 24 hours and 3 days post-injury, and phosphorylation of its downstream targets was consistently altered. Based on this period of observed decreased AMPK activity, we administered an AMPK activator post-injury, and this improved cognitive outcome. Finally, to examine whether AMPK-regulated target Glut4 is involved in post-injury glucose metabolism, we applied an inhibitor and found this treatment impaired post-injury cognitive function. This work is significant, as AMPK activation may represent a new TBI therapeutic target.
Resumo:
Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.
Traumatic brain injury stimulates hippocampal catechol-O-methyl transferase expression in microglia.
Resumo:
Outcome following traumatic brain injury (TBI) is in large part determined by the combined action of multiple processes. In order to better understand the response of the central nervous system to injury, we utilized an antibody array to simultaneously screen 507 proteins for altered expression in the injured hippocampus, a structure critical for memory formation. Array analysis indicated 41 candidate proteins have altered expression levels 24h after TBI. Of particular interest was catechol-O-methyl transferase (COMT), an enzyme involved in metabolizing catecholamines released following neuronal activity. Altered catecholamine signaling has been observed after brain injury, and may contribute to the cognitive dysfunctions and behavioral deficits often experienced after TBI. Our data shows that COMT expression in the injured ipsilateral hippocampus was elevated for at least 14 d after controlled cortical impact injury. We found strong co-localization of COMT immunoreactivity with the microglia marker Iba1 near the injury site. Since dopamine transporter expression has been reported to be down-regulated after brain injury, COMT-mediated catecholamine metabolism may play a more prominent role in terminating catecholamine signaling in injured areas.
Resumo:
Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^
Resumo:
This study described home infusion techniques and practices, measured the perceived risk of HIV and hepatitis transmission to self and others, and measured the outcome expectancy of following risk reduction guidelines for 90 hemophilia patients and/or their infusion assistants. It also assessed general knowledge of HIV and hepatitis information for the same population.^ The study subjects were hemophilia patients or their infusion assistants from the Gulf States Hemophilia Center in Houston, the El Paso Satellite Hemophilia Clinic in El Paso, or Texas members of the Women Outreach Network of the National Hemophilia Foundation (WONN) group. Each subject was interviewed either by telephone or in person. The questionnaire used was developed for the study and consisted of 60 items. These items assessed general demographics for the patients and assistants, including questions about their training to do infusions as well as the actual practices, measured perceived personal risk for the transmission of HIV or hepatitis to the assistants, perceived risk of transmission of HIV or hepatitis to others for assistants and self-infusers, and the outcome expectancy for following recommended risk reduction guidelines also for both groups.^ The theoretical framework used assumed that perceived risk and outcome expectancy would be predictive of behavior. The findings did not support this theory. Instead, the findings suggest that infusion behavior is habitual in nature; most respondents perform exactly the same behavior for every infusion. Since none of the variables selected were predictive of the compliance behavior for home infusion the teaching method should be directed towards mastery learning, or learning that will incorporate the correct behavior into a habitual pattern of home infusion. ^
Resumo:
The study aim was to determine whether using automated side loader (ASL) trucks in higher proportions compared to other types of trucks for residential waste collection results in lower injury rates (from all causes). The primary hypothesis was that the risk of injury to workers was lower for those who work with ASL trucks than for workers who work with other types of trucks used in residential waste collection. To test this hypothesis, data were collected from one of the nation’s largest companies in the solid waste management industry. Different local operating units (i.e. facilities) in the company used different types of trucks to varying degrees, which created a special opportunity to examine refuse collection injuries and illnesses and the risk reduction potential of ASL trucks.^ The study design was ecological and analyzed end-of-year data provided by the company for calendar year 2007. During 2007, there were a total of 345 facilities which provided residential services. Each facility represented one observation.^ The dependent variable – injury and illness rate, was defined as a facility’s total case incidence rate (TCIR) recorded in accordance with federal OSHA requirements for the year 2007. The TCIR is the rate of total recordable injury and illness cases per 100 full-time workers. The independent variable, percent of ASL trucks, was calculated by dividing the number of ASL trucks by the total number of residential trucks at each facility.^ Multiple linear regression models were estimated for the impact of the percent of ASL trucks on TCIR per facility. Adjusted analyses included three covariates: median number of hours worked per week for residential workers; median number of months of work experience for residential workers; and median age of residential workers. All analyses were performed with the statistical software, Stata IC (version 11.0).^ The analyses included three approaches to classifying exposure, percent of ASL trucks. The first approach included two levels of exposure: (1) 0% and (2) >0 - <100%. The second approach included three levels of exposure: (1) 0%, (2) ≥ 1 - < 100%, and (3) 100%. The third approach included six levels of exposure to improve detection of a dose-response relationship: (1) 0%, (2) 1 to <25%, (3) 25 to <50%, (4) 50 to <75%, (5) 75 to <100%, and (6) 100%. None of the relationships between injury and illness rate and percent ASL trucks exposure levels was statistically significant (i.e., p<0.05), even after adjustment for all three covariates.^ In summary, the present study shows that there is some risk reduction impact of ASL trucks but not statistically significant. The covariates demonstrated a varied yet more modest impact on the injury and illness rate but again, none of the relationships between injury and illness rate and the covariates were statistically significant (i.e., p<0.05). However, as an ecological study, the present study also has the limitations inherent in such designs and warrants replication in an individual level cohort design. Any stronger conclusions are not suggested.^