2 resultados para jaws

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: We hypothesized that, similar to idiopathic hip osteonecrosis, the T-786C mutation of the endothelial nitric oxide synthase (eNOS) gene affecting nitric oxide (NO) production was associated with neuralgia-inducing cavitational osteonecrosis of the jaws (NICO). DESIGN: In 22 NICO patients, not having taken bisphosphonates, mutations affecting NO production (eNOS T-786C, stromelysin 5A6A) were measured by polymerase chain reaction. Two healthy normal control subjects were matched per case by race and gender. RESULTS: Homozygosity for the mutant eNOS allele (TT) was present in 6 out of 22 patients (27%) with NICO compared with 0 out of 44 (0%) race and gender-matched control subjects; heterozygosity (TC) was present in 8 patients (36%) versus 15 control subjects (34%); and the wild-type normal genotype (CC) was present in 9 patients (36%) versus 29 controls (66%) (P = .0008). The mutant eNOS T-786C allele was more common in cases (20 out of 44 [45%]) than in control subjects (15 out of 88 [17%]) (P = .0005). The distribution of the stromelysin 5A6A genotype in cases did not differ from control subjects (P = .13). CONCLUSIONS: The eNOS T-786C polymorphism affecting NO production is associated with NICO, may contribute to the pathogenesis of NICO, and may open therapeutic medical approaches to treatment of NICO through provision of L-arginine, the amino-acid precursor of NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.