23 resultados para isolates of rice grassy stunt virus

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterococcus faecium recently evolved from a generally avirulent commensal into a multidrug-resistant health care-associated pathogen causing difficult-to-treat infections, but little is known about the factors responsible for this change. We previously showed that some E. faecium strains express a cell wall-anchored collagen adhesin, Acm. Here we analyzed 90 E. faecium isolates (99% acm(+)) and found that the Acm protein was detected predominantly in clinically derived isolates, while the acm gene was present as a transposon-interrupted pseudogene in 12 of 47 isolates of nonclinical origin. A highly significant association between clinical (versus fecal or food) origin and collagen adherence (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using 98 clinical methicillin-susceptible Staphylococcus aureus isolates of known beta-lactamase (Bla) type, we found a pronounced inoculum effect for cephalexin (mostly Bla type A and C strains), a mild inoculum effect for cephalothin (especially types B and C), and no inoculum effects for ceftriaxone and cefuroxime. Ceftobiprole showed the lowest MICs at a high inoculum but with a slight increase for Bla-positive versus Bla-negative strains. Since a potential therapeutic effect associated with a cephalosporin inoculum effect has been described, further studies are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methicillin (meticillin)-susceptible Staphylococcus aureus (MSSA) strains producing large amounts of type A beta-lactamase (Bla) have been associated with cefazolin failures, but the frequency and impact of these strains have not been well studied. Here we examined 98 MSSA clinical isolates and found that 26% produced type A Bla, 15% type B, 46% type C, and none type D and that 13% lacked blaZ. The cefazolin MIC(90) was 2 microg/ml for a standard inoculum and 32 microg/ml for a high inoculum, with 19% of isolates displaying a pronounced inoculum effect (MICs of >or=16 microg/ml with 10(7) CFU/ml) (9 type A and 10 type C Bla producers). At the high inoculum, type A producers displayed higher cefazolin MICs than type B or C producers, while type B and C producers displayed higher cefamandole MICs. Among isolates from hemodialysis patients with MSSA bacteremia, three from the six patients who experienced cefazolin failure showed a cefazolin inoculum effect, while none from the six patients successfully treated with cefazolin showed an inoculum effect, suggesting an association between these strains and cefazolin failure (P = 0.09 by Fisher's exact test). In summary, 19% of MSSA clinical isolates showed a pronounced inoculum effect with cefazolin, a phenomenon that could explain the cases of cefazolin failure previously reported for hemodialysis patients with MSSA bacteremia. These results suggest that for serious MSSA infections, the presence of a significant inoculum effect with cefazolin could be associated with clinical failure in patients treated with this cephalosporin, particularly when it is used at low doses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Soehner-Dmochowski strain of murine sarcoma virus (MuSV-SD) was derived from a bone tumor of a New Zealand Black (NZB) rat infected with the Moloney strain of MuSV, which carries the gene encoding the v-mos protein. Serial passage of cell-free tumor extracts both decreased the latent period and resulted in osteosarcomas. Cells from a late passage tumor were established in culture, cell-free extracts frozen, and later inoculated into newborn NZB rats. One of the resulting bone tumors was established in culture and clonal cell lines derived, of which S4 was selected for the present study. The objectives of the study were two-fold: an examination of the genetic organization of MuSV-SD, and an examination of the biochemical characteristics of the viral proteins, since this is an acutely transforming virus which may yield insights into the mechanism of transformation caused by the v-mos protein. Blot hybridization of digested S4 genomic DNA reveals three candidate MuSV-SD integrated viral DNAs. The largest of these, MuSV-SD-6.5, was cloned from an S4 cosmid library, and the complete MuSV-SD-mos sequence was determined. The predicted amino acid sequence of the v-mos protein was compared to that of MuSV-124 and Ht-1, which show a 96.5% and 97.1% similarity, respectively. To characterize the MuSV-SD-mos protein further, immunochemical assays were performed using anti-mos antisera. The immunoblot analysis and immunoprecipitation assays demonstrated that similar levels of the v-mos protein were present in cells chronically infected with either MuSV-SD or MuSV-124; however, the immune complex kinase assay revealed greatly reduced in vitro serine kinase activity of the MuSV-SD-mos protein compared to that of MuSV-124. Sequence analysis demonstrated that the serine at amino acid residue 358 of the MuSV-SD-mos protein, like that of MuSV-Ht-1, had been mutated to a glycine. Mutations of this serine residue have been shown to affect the detectable in vitro kinase activity, however, v-mos proteins containing this mutation still retain transforming properties. Therefore, although the characteristic in vitro kinase activity of the MuSV-SD-mos protein has not been demonstrated, it is clear that this virus is a potent transforming agent. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine sarcoma viruses constitute a class of replication-defective retroviruses. Cellular transformation may be induced by these viruses in vitro; whereas, fibrosarcomas may result in animals infected with them in vivo (Tooze, 1973; Bishop, 1978). Hybridization studies suggest that murine sarcoma viruses arose by recombination between nondefective murine leukemia virus sequences and certain cellular sequences present in uninfected mouse cells (Hu et al., 1977). A specific gene product, however, has not been implicated in murine sarcoma virus transformation.^ One line of murine sarcoma virus-producing cells, Mo-MuSV-clone 124, (Ball et al., 1973), was studied biochemically because it mainly produces the sarcoma virus as a pseudotype packaged with helper murine leukemia virus proteins. The sarcoma viral RNA was translated in a sophisticated cell-free protein synthesizing system (Murphy and Arlinghaus, 1978). The translation products were analyzed by a number of techniques, including electrophoresis in denaturing gels of SDS polyacrylamide, immunoprecipitation, and peptide mapping. The major products of the total RNA purified from the virus preparation were shown to have molecular weights of about 63,000 (P63('gag)), 42,000 (P42), 40,000 (P40), 38,000 (P38), and 23,000 (P23). The size class of mRNA coding for each of the cell-free products was estimated using a poly(A) selection technique and sucrose gradient fractionation. These analyses were used to localize the coding information related to each of the in vitro synthesized cell-free products within the sarcoma virus genome.^ The major findings of these studies were: (1) the 5' half of the sarcoma viral RNA codes for the 63,000 dalton polypeptide and 42,000 - 38,000 dalton polypeptides derived from the "gag" gene; and (2) the 3' half of the sarcoma viral RNA codes for a 38,000 dalton polypeptide and possibly derived from the cellular acquired sequences. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Reoviridae virus family is a group of economically and pathologically important viruses that have either single-, double-, or triple-shelled protein layers enclosing a segmented double stranded RNA genome. Each virus particle in this family has its own viral RNA dependent RNA polymerase and the enzymatic activities necessary for the mature RNA synthesis. Based on the structure of the inner most cores of the viruses, the Reoviridae viruses can be divided into two major groups. One group of viruses has a smooth surfaced inner core, surrounded by complete outer shells of one or two protein layers. The other group has an inner core decorated with turrets on the five-fold vertices, and could either completely lack or have incomplete outer protein layers. The structural difference is one of the determinant factors for their biological differences during the infection. ^ Cytoplasmic polyhedrosis virus (CPV) is a single-shelled, turreted virus and the structurally simplest member in Reoviridae. It causes specific chronic infections in the insect gut epithelial cells. Due to its wide range of insect hosts, CPV has been engineered as a potential insecticide for use in fruit and vegetable farming. Its unique structural simplicity, unparalleled capsid stability and ease of purification make CPV an ideal model system for studying the structural basis of dsRNA virus assembly at the highest possible resolution by electron cryomicroscopy (cryoEM) and three-dimensional (3D) reconstruction. ^ In this thesis work, I determined the first 3D structure of CPV capsids using 100 kV cryoEM. At an effective resolution of 17 Å, the full capsid reveals a 600-Å diameter, T = 1 icosahedral shell decorated with A and B spikes at the 5-fold vertices. The internal space of the empty CPV is unoccupied except for 12 mushroom-shaped densities that are attributed to the transcriptional enzyme complexes. The inside of the full capsid is packed with icosahedrally-ordered viral genomic RNA. The interactions of viral RNA with the transcriptional enzyme complexes and other capsid proteins suggest a mechanism for RNA transcription and subsequent release. ^ Second, the interactions between the turret proteins (TPs) and the major capsid shell protein (CSPs) have been identified through 3D structural comparisons of the intact CPV capsids with the spikeless CPV capsids, which were generated by chemical treatments. The differential effects of these chemical treatment experiments also indicated that CPV has a significantly stronger structural integrity than other dsRNA viruses, such as the orthoreovirus subcores, which are normally enclosed within outer protein shells. ^ Finally, we have reconstructed the intact CPV to an unprecendented 8 Å resolution from several thousand of 400kV cryoEM images. The 8 Å structure reveals interactions among the 120 molecules of each of the capsid shell protein (CSP), the large protrusion protein (LPP), and 60 molecules of the turret protein (TP). A total of 1980 α-helices and 720 β-sheets have been identified in these capsid proteins. The CSP structure is largely conserved, with the majority of the secondary structures homologous to those observed in the x-ray structures of corresponding proteins of other reoviruses, such as orthoreovirus and bluetongue virus. The three domains of TP are well positioned to play multifunctional roles during viral transcription. The completely non-equivalent interactions between LPP and CSP and those between the anchoring domain of TP and CSP account for the unparalleled stability of this structurally simplest member of the Reoviridae. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV)-based gene transfer systems are being seriously considered for human gene therapy as an alternative to vectors based on primate lentiviruses, a genetically complex group of retroviruses capable of infecting non-dividing cells. The greater phylogenetic distance between the feline and primate lentiviruses is thought to reduce chances of the generation of recombinant viruses. However, safety of FIV-based vector systems has not been tested experimentally. Since primate lentiviruses such as human and simian immunodeficiency viruses (HIV/SIV) can cross-package each other's genomes, we tested this trait with respect to FIV. Unexpectedly, both feline and primate lentiviruses were reciprocally able to both cross-package and propagate each other's RNA genomes. This was largely due to the recognition of viral packaging signals by the heterologous proteins. However, a simple retrovirus such as Mason-Pfizer monkey virus (MPMV) was unable to package FIV RNA. Interestingly, FIV could package MPMV RNA, but not propagate it for further steps of replication. These findings suggest that upon co-infection of the same host, cross-packaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential. ^ In order to understand the packaging determinants in FIV, we conducted a detailed mutational analysis of the region thought to contain FIV packaging signal. We show that the first 90–120 nt of the 5′ untranslated region (UTR) and the first 90 nt of gag were simultaneously required for efficient FIV RNA packaging. These results suggest that the primary FIV packaging signal is multipartite and discontinuous, composed of two core elements separated by 150 nt of the 5 ′UTR. ^ The above studies are being used towards the development of safer FIV-based self-inactivating (SIN) vectors. These vectors are being designed to eliminate the ability of FIV transfer vector RNAs to be mobilized by primate lentiviral proteins that may be present in the target cells. Preliminary test of the first generation of these vectors has revealed that they are incapable of being propagated by feline proteins. The inability of FIV transfer vectors to express packageable vector RNA after integration should greatly increase the safety of FIV vectors for human gene therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Moloney murine sarcoma virus (Mo-MuSV) isolates contain a cellular sequence, termed mos, which is responsible for the transforming ability of Mo-MuSV. A serine kinase activity has been found to be associated with mos gene products of several isolates of Mo-MuSV. A mutant of Mo-MuSV strain 124 (designated MuSV ts110) is temperature-sensitive (ts) for transformation and encodes two proteins, P85('gag-mos) (an 85,000 M(,r) protein encoded by the gag and mos genes) and P58('gag), at the permissive temperature (28(DEGREES)C). At the nonpermissive temperature (39(DEGREES)C), only P58('gag) is found in MuSV ts110-infected NRK cells (6m2 cells). Both P85('gag-mos) and P58('gag) were phosphorylated when anti-gag immune complexes containing these proteins were incubated at 22(DEGREES)C with (lamda)-('32)P -ATP and MnCl(,2). The kinase detected in anti-gag complexes from 6m2 cells at permissive temperature was associated with P85('gag-mos) since immune complexes from 39(DEGREES)C 6m2 cells, which lack P85('gag-mos), produced no phosphorylated P58('gag) molecules. In addition, an anti-mos complex (anti-mos 37-55 complexes) allowed in vitro phosphorylation of P85('gag-mos) in the absence of P58('gag). No kinase activity was detectable with other gag gene products (e.g., Mo-MuSV-124 P62('gag)), suggesting that the P85('gag-mos) kinase activity was present within the mos portion of the protein. The P85('gag-mos) kinase activity was very thermolabile upon shifting 6m2 cells from permissive to nonpermissive temperatures (t(, 1/2) for inactivation = 5 min). In contrast, a spontaneous revertant of MuSV ts110 encodes a larger gag-mos protein (termed P100('gag-mos)) which contained a kinase activity stable to 39(DEGREES)C. Using the optimal conditions developed for the P85('gag-mos) kinase, Mo-MuSV-encoded p37('mos) was also found to be associated with a serine kinase activity. Phosphorylation of p37('mos) and a 43 Kd protein (super-phosphorylated p37('mos)) occurred in anti-mos(37-55) complexes from Mo-MuSV-124 acutely-infected NIH 3T3 cells, but neither in mos 37-55 peptide-blocked anti-mos(37-55) complexes nor in immune complexes from uninfected NIH 3T3 cells. Antibodies directed against the C-terminus of v-mos were found to inhibit the in vitro phosphorylation of p37('mos), suggesting that the extreme C-terminal sequence of v-mos may be important for an intrinsic kinase activity. This inhibitory action by antibodies to the C-terminus of p37('mos), when considered with all the other data reported here, provides convincing evidence that the v-mos gene encodes a serine protein kinase activity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the in vivo safety, efficacy, and persistence of autologous Epstein Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) for the treatment of solid organ transplant (SOT) recipients at high risk for EBV-associated posttransplantation lymphoproliferative disease (PTLD). EBV-CTLs generated from 35 patients expanded with normal kinetics contained both CD8 and CD4 lymphocytes and produced significant specific killing of autologous EBV-transformed B lymphoblastoid cell lines (LCLs). Twelve SOT recipients at high risk for PTLD, or with active disease, received autologous CTL infusions without toxicity. Real-time polymerase chain reaction (PCR) monitoring of EBV-DNA showed a transient increase in plasma EBV-DNA suggestive of lysis of EBV-infected cells, although there was no consistent decrease in virus load in peripheral-blood mononuclear cells. Interferon-gamma enzyme-linked immunospot (ELISPOT) assay and tetramer analysis showed an increase in the frequency of EBV-responsive T cells, which returned to preinfusion levels after 2 to 6 months. None of the treated patients developed PTLD. One patient with liver PTLD showed a complete response, and one with ocular disease has had a partial response stable for over one year. These data are consistent with an expansion and persistence of adoptively transferred EBV-CTLs that is limited in the presence of continued immunosuppression but that nonetheless produces clinically useful antiviral activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of