3 resultados para isochronous cyclotron

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br-77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa. ^

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.