3 resultados para interpolazione curve piane punti grassi sistemi lineari
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Robotic-assisted laparoscopic surgery (RALS) is evolving as an important surgical approach in the field of colorectal surgery. We aimed to evaluate the learning curve for RALS procedures involving resections of the rectum and rectosigmoid. METHODS: A series of 50 consecutive RALS procedures were performed between August 2008 and September 2009. Data were entered into a retrospective database and later abstracted for analysis. The surgical procedures included abdominoperineal resection (APR), anterior rectosigmoidectomy (AR), low anterior resection (LAR), and rectopexy (RP). Demographic data and intraoperative parameters including docking time (DT), surgeon console time (SCT), and total operative time (OT) were analyzed. The learning curve was evaluated using the cumulative sum (CUSUM) method. RESULTS: The procedures performed for 50 patients (54% male) included 25 AR (50%), 15 LAR (30%), 6 APR (12%), and 4 RP (8%). The mean age of the patients was 54.4 years, the mean BMI was 27.8 kg/m(2), and the median American Society of Anesthesiologists (ASA) classification was 2. The series had a mean DT of 14 min, a mean SCT of 115.1 min, and a mean OT of 246.1 min. The DT and SCT accounted for 6.3% and 46.8% of the OT, respectively. The SCT learning curve was analyzed. The CUSUM(SCT) learning curve was best modeled as a parabola, with equation CUSUM(SCT) in minutes equal to 0.73 × case number(2) - 31.54 × case number - 107.72 (R = 0.93). The learning curve consisted of three unique phases: phase 1 (the initial 15 cases), phase 2 (the middle 10 cases), and phase 3 (the subsequent cases). Phase 1 represented the initial learning curve, which spanned 15 cases. The phase 2 plateau represented increased competence with the robotic technology. Phase 3 was achieved after 25 cases and represented the mastery phase in which more challenging cases were managed. CONCLUSIONS: The three phases identified with CUSUM analysis of surgeon console time represented characteristic stages of the learning curve for robotic colorectal procedures. The data suggest that the learning phase was achieved after 15 to 25 cases.
Resumo:
Despite many researches on development in education and psychology, not often is the methodology tested with real data. A major barrier to test the growth model is that the design of study includes repeated observations and the nature of the growth is nonlinear. The repeat measurements on a nonlinear model require sophisticated statistical methods. In this study, we present mixed effects model in a negative exponential curve to describe the development of children's reading skills. This model can describe the nature of the growth on children's reading skills and account for intra-individual and inter-individual variation. We also apply simple techniques including cross-validation, regression, and graphical methods to determine the most appropriate curve for data, to find efficient initial values of parameters, and to select potential covariates. We illustrate with an example that motivated this research: a longitudinal study of academic skills from grade 1 to grade 12 in Connecticut public schools. ^
Resumo:
This dissertation examined body mass index (BMI) growth trajectories and the effects of gender, ethnicity, dietary intake, and physical activity (PA) on BMI growth trajectories among 3rd to 12th graders (9-18 years of age). Growth curve model analysis was performed using data from The Child and Adolescent Trial for Cardiovascular Health (CATCH) study. The study population included 2909 students who were followed up from grades 3-12. The main outcome was BMI at grades 3, 4, 5, 8, and 12. ^ The results revealed that BMI growth differed across two distinct developmental periods of childhood and adolescence. Rate of BMI growth was faster in middle childhood (9-11 years old or 3rd - 5th grades) than in adolescence (11-18 years old or 5th - 12th grades). Students with higher BMI at 3rd grade (baseline) had faster rates of BMI growth. Three groups of students with distinct BMI growth trajectories were identified: high, average, and low. ^ Black and Hispanic children were more likely to be in the groups with higher baseline BMI and faster rates of BMI growth over time. The effects of gender or ethnicity on BMI growth differed across the three groups. The effects of ethnicity on BMI growth were weakened as the children aged. The effects of gender on BMI growth were attenuated in the groups with a large proportion of black and Hispanic children, i.e., “high” or “average” BMI trajectory group. After controlling for gender, ethnicity, and age at baseline, in the “high BMI trajectory”, rate of yearly BMI growth in middle childhood increased 0.102 for every 500 Kcals increase (p=0.049). No significant effects of percentage of energy from total fat and saturated fat on BMI growth were found. Baseline BMI increased 0.041 for every 30 minutes increased in moderate-to-vigorous PA (MVPA) in the “low BMI trajectory”, while Baseline BMI decreased 0.345 for every 30 minutes increased in vigorous PA (VPA) in the “high BMI trajectory”. ^ Childhood overweight and obesity interventions should start at the earliest possible ages, prior to 3rd grade and continue through grade school. Interventions should focus on all children, but specifically black and Hispanic children, who are more likely to be highest at-risk. Promoting VPA earlier in childhood is important for preventing overweight and obesity among children and adolescents. Interventions should target total energy intake, rather than only percentage of energy from total fat or saturated fat. ^