3 resultados para internal transcribed spacer-2
em DigitalCommons@The Texas Medical Center
Resumo:
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.
Resumo:
Human a2 -macroglobulin ( a2 M; homotetramer, Mr 720 kDa) is an essential scavenger of proteinases in the serum. Each of its four subunits has a ‘bait region’, with cleavage sequences for almost all endo-proteinases, an unusual thiol ester moiety and a receptor-binding domain (RBD). Bait region cleavage in native a2 M ( a2 M-N) by a proteinase results in rapid thiol ester breakage, with a large-scale structural transformation, in which a2 M uniquely entraps the proteinase in a cage-like structure and exposes receptor-binding domains for rapid endocytosis. Transformed a2 M ( a2 M-TR) contains up to two proteinases, which remain active to small substrates. 3-D electron microscopy is optimally suited to study this unusual structural change at resolutions near (1/30) Å−1. ^ The structural importance of the thiol esters was demonstrated by a genetically-engineered a2 M, with the cysteines involved in thiol ester formation mutated to serines, which appeared structurally homologous to a2 M-TR. This demonstrates that the four highly labile thiol esters alone maintain the a2 M-N structure, while the ‘closed trap’ formed by a2 M-TR is a more stable structural form. ^ Half-transformed a2 M ( a2 M-HT), with cleaved bait regions and thiol esters in only two of its four subunits, provides an important structural link between a2 M-N and a2 M-TR. A comparison with a2 M-N showed the two proteinase-entrapping domains were above and below the plane bisecting the long axis. Both a2 M-N and a2 M-TR consist of two dense, oppositely twisted strands with significant interconnections, indicating that the structural change involves a rotation of these strands. In a2 M-HT these strands were partially untwisted with large central openings, revealing the manner in which the proteinase enters the internal cavity of a2 M. ^ In reconstructions of a2 M-N, a2 M-HT and a2 M-TR labeled with a monoclonal Fab, the Fabs were located on distal ends of each constitutive strand, demonstrating an anti-parallel arrangement of the subunits. Separation between the top and bottom pairs of Fabs was nearly the same on all structures, but the pairs were rotated about the long axis. Taken together, these results indicate that upon proteinase cleavage the two strands in a2 M-N separate. The proteinase enters the structure, while the strands re-twist to encage it. In a2 M-TR, which displays receptor-binding arms, more than two subunits are transformed as strands in the transformed half of a2 M-HT were not separated. ^
Resumo:
Rhodobacter sphaeroides 2.4.1 is a Gram negative facultative photoheterotrophic bacterium that has been shown to have an N-acyl homoserine lactone-based quorum sensing system called cer for c&barbelow;ommunity e&barbelow;scape r&barbelow;esponse. The cer ORFs are cerR, the transcriptional regulator, cerI, the autoinducer synthase and cerA , whose function is unknown. The autoinducer molecule, 7,8- cis-N-(tetradecenoyl) homoserine lactone, has been characterized. The objective of this study was to identify an environmental stimulus that influences the regulation of cerRAI and, to characterize transcription of the cer operon. ^ A cerR::lacZ transcriptional fusion was made and β-Galactosidase assays were performed in R. sphaeroides 2.4.1 strains, wild type, AP3 (CerI−) and AP4 (CerR−). The cerR::lacZ β-Galactosidase assays were used as an initial survey of the mode of regulation of the Cer system. A cerA::lacZ translational fusion was created and was used to show that cerA can be translated. The presence of 7,8-cis-N-(tetradecenoyl) homoserine lactone was detected from R. sphaeroides strains wild type and AP4 (CerR−) using a lasR::lacZ translational fusion autoinducer bioassay. The cerR::lacZ transcriptional fusion in R. sphaeroides 2.4.1 wild type was tested under different environmental stimuli, such as various carbon sources, oxygen tensions, light intensities and culture media to determine if they influence transcription of the cer ORFs. Although lacZ assay data implicated high light intensity at 100 W/m2 to stimulate cer transcription, quantitative Northern RNA data of the cerR transcript showed that low light intensity at 3 W/m2 is at least one environmental stimulus that induces cer transcription. This finding was supported by DNA microarray analysis. Northern analysis of the cerRAI transcript provided evidence that the cer ORFs are co-transcribed, and that the cer operon contains two additional genes. Bioinformatics was used to identify genes that may be regulated by the Cer system by identifying putative lux box homologue sequences in the presumed promoter region of these genes. Genes that were identified were fliQ, celB and calsymin, all implicated in interacting with plants. Primer extension was used to help localize cis-elements in the promoter region. The cerR::lacZ transcriptional fusion was monitored in a subset of different global DNA binding transcriptional regulator mutant strains of R. sphaeroides 2.4.1. Those regulators involved in maintaining an anaerobic photosynthetic lifestyle appeared to have an effect. Collectively, the data imply that R. sphaeroides 2.4.1 activates the Cer system when grown anaerobic photosynthetically at low light intensity, 3 W/m2, and it may be involved in an interaction with plants. ^