13 resultados para innovative capabilities
em DigitalCommons@The Texas Medical Center
Resumo:
Introduction Few physicians involved in medical education are likely to have had formal training in teaching. One pedagogical method that can enhance relationships, thus improve teaching and learning is the Critical Friends Group (CFG). The CFG is a collegial support team that offers improved understanding of others. Unconditional high regard for team members frames the interactions in the CFG. These teams could be used to reduce bias and enhance intercultural competence among student CFGs and faculty CFGs. [See PDF for complete abstract]
Resumo:
Introduction: The Virtual Molecular Biology Lab is an innovative, computer-based educational program designed to teach advanced high school biology students how to create a transgenic mouse model in a simulated laboratory setting. It was created in an effort to combat the current decrease in adolescent enthusiasm for and academic achievement in science and science careers, especially in Hispanic students. Because studies have found that hands-on learning, particularly computer-based instruction, is effective in enhancing science achievement, the Virtual Lab is a potential tool for increasing the number of Hispanic students that choose to enter science fields. [See PDF for complete abstract]
Resumo:
Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.
Resumo:
BACKGROUND: We have carried out an extensive qualitative research program focused on the barriers and facilitators to successful adoption and use of various features of advanced, state-of-the-art electronic health records (EHRs) within large, academic, teaching facilities with long-standing EHR research and development programs. We have recently begun investigating smaller, community hospitals and out-patient clinics that rely on commercially-available EHRs. We sought to assess whether the current generation of commercially-available EHRs are capable of providing the clinical knowledge management features, functions, tools, and techniques required to deliver and maintain the clinical decision support (CDS) interventions required to support the recently defined "meaningful use" criteria. METHODS: We developed and fielded a 17-question survey to representatives from nine commercially available EHR vendors and four leading internally developed EHRs. The first part of the survey asked basic questions about the vendor's EHR. The second part asked specifically about the CDS-related system tools and capabilities that each vendor provides. The final section asked about clinical content. RESULTS: All of the vendors and institutions have multiple modules capable of providing clinical decision support interventions to clinicians. The majority of the systems were capable of performing almost all of the key knowledge management functions we identified. CONCLUSION: If these well-designed commercially-available systems are coupled with the other key socio-technical concepts required for safe and effective EHR implementation and use, and organizations have access to implementable clinical knowledge, we expect that the transformation of the healthcare enterprise that so many have predicted, is achievable using commercially-available, state-of-the-art EHRs.
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.
Resumo:
This paper presents a secondary analysis of data from a longitudinal evaluation of a community-based family preservation program in Portland, Oregon, designed for and by African Americans. Families served by the Family Enhancement Program (FEP) resemble chronically neglecting families in terms of numbers of children and length of contact with child protective services. Six- and twelve-month follow-ups for FEP clients were compared to data on families served by the Oregon State Office of Services to Children and Families (SOSCF). The author found that FEP families are more likely than SOSCFfamilies to show greater improvement between the pretest scores and the posttest scores for number of days in placement, number of placements, and number of founded maltreatment reports.
Resumo:
Objective. To evaluate the HEADS UP Virtual Molecular Biology Lab, a computer-based simulated laboratory designed to teach advanced high school biology students how to create a mouse model. ^ Design. A randomized clinical control design of forty-four students from two science magnet high schools in Mercedes, Texas was utilized to assess knowledge and skills of molecular laboratory procedures, attitudes towards science and computers as a learning tool, and usability of the program. ^ Measurements. Data was collected using five paper-and-pencil formatted questionnaires and an internal "lab notebook." ^ Results. The Virtual Lab was found to significantly increase student knowledge over time (p<0.005) and with each use (p<0.001) as well as positively increase attitudes towards computers (p<0.001) and skills (p<0.005). No significant differences were seen in science attitude scores.^ Conclusion. These results provide evidence that the HEADS UP Virtual Molecular Biology Lab is a potentially effective educational tool for high school molecular biology education.^
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^
Resumo:
Obesity has been on the rise in the United States over the last 30 years for all populations, including preschoolers. The purpose of the project was to develop an observation tool to measure physical activity levels in preschool children and use the tool in a pilot test of the CATCH UP curriculum at two Head Start Centers in Houston. Pretest and posttest interobserver agreements were all above 0.60 for physical activity level and physical activity type. Preschoolers spent the majority of their time in light physical activity (75.33% pretest, 87.77% posttest), and spent little time in moderate to vigorous physical activity (MVPA) (24.67% pretest, 12.23% posttest). Percent time spent in MVPA decreased significantly pretest to posttest from (F=5.738, p=0.043). While the pilot testing of the CATCH UP curriculum did not show an increase in MVPA, the SOFIT-P tool did show promising results as being a new method for collecting physical activity level data for preschoolers. Once the new tool has undergone more reliability and validity testing, it could allow for a more convenient method of collecting physical activity levels for preschoolers. ^
Resumo:
The Federal Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid (CMS) play key roles in making Class III, medical devices available to the public, and they are required by law to meet statutory deadlines for applications under review. Historically, both agencies have failed to meet their respective statutory requirements. Since these failures affect patient access and may adversely impact public health, Congress has enacted several “modernization” laws. However, the effectiveness of these modernization laws has not been adequately studied or established for Class III medical devices. ^ The aim of this research study was, therefore, to analyze how these modernization laws may have affected public access to medical devices. Two questions were addressed: (1) How have the FDA modernization laws affected the time to approval for medical device premarket approval applications (PMAs)? (2) How has the CMS modernization law affected the time to approval for national coverage decisions (NCDs)? The data for this research study were collected from publicly available databases for the period January 1, 1995, through December 31, 2008. These dates were selected to ensure that a sufficient period of time was captured to measure pre- and post-modernization effects on time to approval. All records containing original PMAs were obtained from the FDA database, and all records containing NCDs were obtained from the CMS database. Source documents, including FDA premarket approval letters and CMS national coverage decision memoranda, were reviewed to obtain additional data not found in the search results. Analyses were conducted to determine the effects of the pre- and post-modernization laws on time to approval. Secondary analyses of FDA subcategories were conducted to uncover any causal factors that might explain differences in time to approval and to compare with the primary trends. The primary analysis showed that the FDA modernization laws of 1997 and 2002 initially reduced PMA time to approval; after the 2002 modernization law, the time to approval began increasing and continued to increase through December 2008. The non-combined, subcategory approval trends were similar to the primary analysis trends. The combined, subcategory analysis showed no clear trends with the exception of non-implantable devices, for which time to approval trended down after 1997. The CMS modernization law of 2003 reduced NCD time to approval, a trend that continued through December 2008. This study also showed that approximately 86% of PMA devices do not receive NCDs. ^ As a result of this research study, recommendations are offered to help resolve statutory non-compliance and access issues, as follows: (1) Authorities should examine underlying causal factors for the observed trends; (2) Process improvements should be made to better coordinate FDA and CMS activities to include sharing data, reducing duplication, and establishing clear criteria for “safe and effective” and “reasonable and necessary”; (3) A common identifier should be established to allow tracking and trending of applications between FDA and CMS databases; (4) Statutory requirements may need to be revised; and (5) An investigation should be undertaken to determine why NCDs are not issued for the majority of PMAs. Any process improvements should be made without creating additional safety risks and adversely impacting public health. Finally, additional studies are needed to fully characterize and better understand the trends identified in this research study.^
Resumo:
The development of the Alcohol Treatment Profile System (ATPS) was described and an evaluation of its perceived value by various States was undertaken, The ATPS is a treatment needs assessment tool based on the unification of several large national epidemiologic and treatment data sets. It was developed by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and responsibility for its creation was given to the NIAAA's Alcohol Epidemiologic Data System (AEDS). The ATPS merges county-level measures of alcohol problem prevalence (the specially constructed AEDS Alcohol Problem Indicators), indicating "need" for treatment, and treatment utilization measures (the National Drug and Alcohol Treatment Utilization Survey), indicating treatment "demand." The capabilities of the ATPS in the unique planning and policy-making settings of several States were evaluated.^
Resumo:
Children investigated by child welfare are at significant risk for poor cognitive, emotional, social, behavioral and economic outcomes. In 2000, California formed the Child Welfare Services Group to propose changes in how child welfare services are delivered, the CWS Redesign. California State University, Long Beach’s child welfare training program developed its complement. Fundamentally, Redesign calls for partnering with families and communities to strengthen families, prevent unnecessary placements or re-unite families successfully. These changes are a paradigm shift in attitudes toward birth families and communities. In a qualitative study, interns logged their observations and subsequent impressions of CWS-Client encounters to explore how attitudes are learned. Majority of interns observed positive, collaborative encounters and perceived birth parents as motivated. Their impressions support introducing interns to birth families on the front-end of CWS training.
Resumo:
In Chile, street children and youngsters' situations have changed significantly over the last decades. The Metropolitan Observatory is an innovative organization that makes it possible to follow this velnerable group. The Observatory is becoming a pioneering actor in the subject, thanks to the participative work and agreed consensus of different institutions involved. The aim of this paper is to introduce the innovative cross-sectoral work done by the Metropolitan Observatory for street children and youth.