2 resultados para indirect inference
em DigitalCommons@The Texas Medical Center
Resumo:
In Part One, the foundations of Bayesian inference are reviewed, and the technicalities of the Bayesian method are illustrated. Part Two applies the Bayesian meta-analysis program, the Confidence Profile Method (CPM), to clinical trial data and evaluates the merits of using Bayesian meta-analysis for overviews of clinical trials.^ The Bayesian method of meta-analysis produced similar results to the classical results because of the large sample size, along with the input of a non-preferential prior probability distribution. These results were anticipated through explanations in Part One of the mechanics of the Bayesian approach. ^
Resumo:
Of the large clinical trials evaluating screening mammography efficacy, none included women ages 75 and older. Recommendations on an upper age limit at which to discontinue screening are based on indirect evidence and are not consistent. Screening mammography is evaluated using observational data from the SEER-Medicare linked database. Measuring the benefit of screening mammography is difficult due to the impact of lead-time bias, length bias and over-detection. The underlying conceptual model divides the disease into two stages: pre-clinical (T0) and symptomatic (T1) breast cancer. Treating the time in these phases as a pair of dependent bivariate observations, (t0,t1), estimates are derived to describe the distribution of this random vector. To quantify the effect of screening mammography, statistical inference is made about the mammography parameters that correspond to the marginal distribution of the symptomatic phase duration (T1). This shows the hazard ratio of death from breast cancer comparing women with screen-detected tumors to those detected at their symptom onset is 0.36 (0.30, 0.42), indicating a benefit among the screen-detected cases. ^