4 resultados para import

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical ablation studies have shown that neural crest cells (NCC) are critical for thymus organogenesis, though their role in this process has never been determined. We have used a mouse model deficient in NCC near the thymus rudiment to investigate the role of NCC in thymus organogenesis. Splotch mice exhibit a lack of NCC migration due to mutation in the gene encoding the transcription factor Pax 3. Homozygous mutants, designated Pax3Sp/Sp, display a range of phenotypes including spina bifida, cardiac outflow tract deformities, and craniofacial deformities. Pax3Sp/Sp, mice have also been reported to have hypoplastic and abnormal thymi, which is consistent with the expected result based on the classical ablation studies. However, in contrast to the dogma, we find that the thymus lobes in Pax3Sp/Sp, mice are even larger in size than those of littermate controls, although they fail to migrate and are therefore ectopic. Differentiation of the thymic epithelial compartments occurs normally, including the ability to import hematopoietic precursors, until the embryos die at embryonic day E13.0. We also investigated the patterning of the third pharyngeal pouch which gives rise to both the thymus and the parathyroid. Using RNA probes to detect expression of transcription factors exclusively expressed in the ventral, thymus- or dorsal, parathyroidfated domains of the E11.5 third pouch, we show that the parathyroid domain is restricted and the thymus-fated domain is expanded in Pax3Sp/Sp, embryos. Furthermore, mixing of the boundary between these domains occurs at E12.0. These results necessitate reconsideration of the previously accepted role for NCC in thymus organogenesis. NCC are not required for outgrowth of the thymus up to E13.0, and most strikingly, we have discovered a novel role for NCC in establishing parathyroid versus thymus fate boundaries in the third pharyngeal pouch. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macromolecular interactions, such as protein-protein interactions and protein-DNA interactions, play important roles in executing biological functions in cells. However the complexity of such interactions often makes it very challenging to elucidate the structural details of these subjects. In this thesis, two different research strategies were applied on two different two macromolecular systems: X-ray crystallography on three tandem FF domains of transcription regulator CA150 and electron microscopy on STAT1-importin α5 complex. The results from these studies provide novel insights into the function-structure relationships of transcription coupled RNA splicing mediated by CA150 and the nuclear import process of the JAK-STAT signaling pathway. ^ The first project aimed at the protein-protein interaction module FF domain, which often occurs as tandem repeats. Crystallographic structure of the first three FF domains of human CA150 was determined to 2.7 Å resolution. This is the only crystal structure of an FF domain and the only structure on tandem FF domains to date. It revealed a striking connectivity between an FF domain and the next. Peptide binding assay with the potential binding ligand of FF domains was performed using fluorescence polarization. Furthermore, for the first time, FF domains were found to potentially interact with DNA. DNA binding assays were also performed and the results were supportive to this newly proposed functionality of an FF domain. ^ The second project aimed at understanding the molecular mechanism of the nuclear import process of transcription factor STAT1. The first structural model of pSTAT1-importin α5 complex in solution was built from the images of negative staining electron microscopy. Two STAT1 molecules were observed to interact with one molecule of importin α5 in an asymmetric manner. This seems to imply that STAT1 interacts with importin α5 with a novel mechanism that is different from canonical importin α-cargo interactions. Further in vitro binding assays were performed to obtain more details on the pSTAT1-importin α5 interaction. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research study offers a critical assessment of NIH's Consensus Development Program (CDP), focusing upon its historical and valuative bases and its institutionalization in response to social and political forces. The analysis encompasses systems-level, as well as interpersonal factors in the adoption of consensus as the mechanism for resolving scientific controversies in clinical practice application. Further, the evolution of the CDP is also considered from an ecological perspective as a reasoned adaptation by NIH to pressures from its supporters and clients for translating biomedical research into medical practice. The assessment examines federal science policy and institutional designs for the inclusion of the public interest and democratic deliberation.^ The study relies on three distinct approaches to social research. Conventional historical methods were utilized in the interpretation of social and political influences across eras on the evolution of the National Institutes of Health and its response to demands for accountability and relevance through its Consensus Development Program. An embedded single-case study was utilized for an empirical examination of the CDP mechanism through five exemplar conferences. Lastly, a sociohistorical approach was taken to the CDP in order to consider its responsiveness to the values of the eras which created and shaped it. An exploration of organizational behavior with considerations for institutional reform as a response to continuing political and social pressure, it is a study of organizational birth, growth, and response to demands from its environment. The study has explanatory import in its attempt to account for the creation, timing, and form of the CDP, relative to political, institutional, and cultural pressures, and predictive import thorough its historical view which provides a basis for informed speculation on the playing out of tensions between extramural and intermural scientists and the current demands for health care reform. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid redistribution of STAT subcellular localization is an essential feature of cytokine signaling. To elucidate the molecular basis of STAT3 function, which plays a critical role in controlling innate immune responses in vivo, we initiated studies to determine the mechanisms controlling STAT3 nuclear trafficking. We found that STAT3 is transported to the nucleus in the absence of cytokine treatment, as judged by indirect immunofluorescence studies in the presence of leptomycin B, an inhibitor of CRM1-dependent nuclear export, suggesting that the non-phosphorylated STAT3 protein contains a functional nuclear import signal. An isoform lacking the STAT3 N-terminal domain (Δ133STAT3) retains the ability to undergo constitutive nuclear localization, indicating that this region is not essential for cytokine-independent nuclear import. Δ133STAT3 is also transported to the nucleus following stimulation with interleukin-6 (IL-6). Interestingly, IL-6-dependent tyrosine phosphorylation of Δ133STAT3 appears to be prolonged and the nuclear export of the protein delayed in cells expressing endogenous STAT3, consistent with defective Δ133STAT3 dephosphorylation. Endogenous STAT3 does not promote the nuclear export of Δ133STAT3, although dimerization between endogenous Stat3 and Δ133STAT3 is detected readily. Thus, the STAT3 N-terminal domain is not required for dimerization with full-length STAT3, yet appears to play a role in proper export of Stat3 from the nucleus following cytokine stimulation. STAT3-deficient cells reconstituted with Δ133STAT3 show enhanced and prolonged Stat1 signaling in response to IL-6, suggesting that induction of the STAT3-dependent negative regulator SOCS3 is impaired. In fact, Δ133STAT3 fails to induce SOCS3 mRNA efficiently. These studies collectively indicate that the STAT3 N-terminal region may be important for IL-6-dependent target gene activation and nuclear dephosphorylation, while dispensable for nuclear import. STAT3 is an oncogene. STAT3 is constitutively activated in primary tumors of many types. Thus far, research in the design of STAT3 protein inhibitors has focused on the SH2 and DNA-binding domains of STAT3. Interference with these domains eliminates all signaling through STAT3. If the N-terminal domain is involved in tetramerization on a subset of target genes, inhibition of this region may lead to a more selective inhibition of some STAT3 functions while leaving others intact. ^