3 resultados para implementation of organizational values
em DigitalCommons@The Texas Medical Center
Resumo:
With an increasing number of institutions offering proton therapy, the number of multi-institutional clinical trials involving proton therapy will also increase in the coming years. The Radiological Physics Center monitors sites involved in clinical trials through the use of site visits and remote auditing with thermoluminescent dosimeters (TLD) and mailable anthropomorphic phantoms. Currently, there are no heterogeneous phantoms that have been commissioned to evaluate proton therapy. It was hypothesized that an anthropomorphic pelvis phantom can be designed to audit treatment procedures (patient simulation, treatment planning and treatment delivery) at proton facilities to confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 3%. A pelvis phantom originally designed for use with photon treatments was retrofitted for use in proton therapy. The relative stopping power (SP) of each phantom material was measured. Hounsfield Units (HU) for each phantom material were measured with a CT scanner and compared to the relative stopping power calibration curve. The tissue equivalency for each material was calculated. Two proton treatment plans were created; one which did not correct for material SP differences (Plan 1) and one plan which did correct for SP differences (Plan 2). Film and TLD were loaded into the phantom and the phantom was irradiated 3 times per plan. The measured values were compared to the HU-SP calibration curve and it was found that the stopping powers for the materials could be underestimated by 5-10%. Plan 1 passed the criteria for the TLD and film margins with reproducibility under 3% between the 3 trials. Plan 2 failed because the right-left film dose profile average displacement was -9.0 mm on the left side and 6.0 mm on the right side. Plan 2 was intended to improve the agreements and instead introduced large displacements along the path of the beam. Plan 2 more closely represented the actual phantom composition with corrected stopping powers and should have shown an agreement between the measured and calculated dose within 5%/3mm. The hypothesis was rejected and the pelvis phantom was found to be not suitable to evaluate proton therapy treatment procedures.
Resumo:
The Radiological Physics Center (RPC) provides heterogeneous phantoms that are used to evaluate radiation treatment procedures as part of a comprehensive quality assurance program for institutions participating in clinical trials. It was hypothesized that the existing RPC heterogeneous thorax phantom can be modified to assess lung tumor proton beam therapy procedures involving patient simulation, treatment planning, and treatment delivery, and could confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 5%. The Hounsfield Units (HU) for lung equivalent materials (balsa wood and cork) was measured using a CT scanner. The relative linear stopping power (RLSP) of these materials was measured. The linear energy transfer (LET) of Gafchromic EBT2 film was analyzed utilizing parallel and perpendicular orientations in a water tank and compared to ion chamber readings. Both parallel and perpendicular orientations displayed a quenching effect underperforming the ion chamber, with the parallel orientation showing an average 31 % difference and the perpendicular showing an average of 15% difference. Two treatment plans were created that delivered the prescribed dose to the target volume, while achieving low entrance doses. Both treatment plans were designed using smeared compensators and expanded apertures, as would be utilized for a patient in the clinic. Plan 1a contained two beams that were set to orthogonal angles and a zero degree couch kick. Plan 1b utilized two beams set to 10 and 80 degrees with a 15 degree couch kick. EBT2 film and TLD were inserted and the phantom was irradiated 3 times for each plan. Both plans passed the criteria for the TLD measurements where the TLD values were within 7% of the dose calculated by Eclipse. Utilizing the 5%/3mm criteria, the 3 trial average of overall pass rate was 71% for Plan 1a. The 3 trial average for the overall pass rate was 76% for Plan 1b. The trials were then analyzed using RPC conventional lung treatment guidelines set forth by the RTOG: 5%/5mm, and an overall pass rate of 85%. Utilizing these criteria, only Plan 1b passed for all 3 trials, with an average overall pass rate of 89%.
Resumo:
A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.