2 resultados para immortality

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding Nanog’s Role in Cancer Biology Mark Daniel Badeaux Supervisory Professor Dean Tang, PhD The cancer stem cell model holds that tumor heterogeneity and population-level immortality are driven by a subset of cells within the tumor, termed cancer stem cells. Like embryonic or somatic stem cells, cancer stem cells are believed to possess self-renewal capacity and the ability to give rise to a multitude of varieties of daughter cell. Because of cancer’s implied connections to authentic stem cells, we screened a variety of prostate cancer cell lines and primary tumors in order to determine if any notable ‘stemness’ genes were expressed in malignant growths. We found a promising lead in Nanog, a central figure in maintaining embryonic stem cell pluripotency, and through a variety of experiments in which we diminished Nanog expression, found that it may play a significant role in prostate cancer development. We then created a transgenic mouse model in which we targeted Nanog expression to keratin 14-expressing in order to assess its potential contribution to tumorigenesis. We found a variety of developmental abnormalities and altered differentiation patterns in our model , but much to our chagrin we observed neither spontaneous tumor formation nor premalignant changes in these mice, but instead surprisingly found that high levels of Nanog expression inhibited tumor formation in a two-stage skin carcinogenesis model. We also noted a depletion of skin stem cell populations, which underlies the wound-healing defect our mice harbor as well. Gene expression analysis shows a reduction in c-Jun and Bmp5, two genes whose loss inhibits skin tumor development and reduces stem cell counts respectively. As we further explored Nanog’s activity in prostate cancer, it became apparent that the protein oftentimes was not expressed. Emboldened by the competing endogenous RNA (ceRNA) hypothesis, we identified the Nanog 3’UTR as a regulator of the tumor suppressive microRNA 128a (miR-128a), which includes known oncogenes such as Bmi1 among its authentic targets. Future work will necessarily involve discerning instances in which Nanog mRNA is the biologically relevant molecule, as well as identifying additional mRNA species which may serve solely as a molecular sink for miR-128a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of tumor suppressor function in the multistep process of carcinogenesis was studied in the human teratocarcinoma cell line PA-1. Early passage PA-1 cells ($<$P100) are preneoplastic while late passage ($>$P100) PA-1 cells are spontaneously transformed. Previous work demonstrated a causal role for the N-ras oncogene in the neoplastic transformation of this cell line and the gene was cloned. A clonal cell line established at passage 40 has been shown to suppress the neoplastic transformation potential of the PA-1 N-ras oncogene in gene transfer experiments. This phenotype has been termed SRT+ for suppression of ras transformation. A clonal cell line established at passage 63 is neoplastically transformed by the N-ras in similar gene transfer experiments and is regarded as srt$-$. Somatic cell hybrids were formed between the SRT+ cell and two different N-ras transformed srt$-$ cells. The results indicate that five of the seven independent hybrid clones, and all 14 subclones, failed to form tumors in the nude mouse tumor assay. Chromosomal analysis of rare neoplastic segregants which arose from suppressed hybrid populations demonstrate that the general loss of chromosomes correlates with the reemergence of neoplastic transformation. Karyotype analyses demonstrate a statistically correlative loss of chromosomes 1, 4, 19, and to a lesser extent 11, 14, and 16. DNA hybridization analysis demonstrates a single copy of the intact N-ras oncogene in parental cells, suppressed hybrids, and neoplastically transformed hybrids. These results indicate that functional ras transformation suppression is a trans-dominant trait which may be controlled by sequences residing on particular chromosomes in the human genome. Furthermore, the suppression of ras transformation results from a unique step in the multistep process of carcinogenesis that is different from the induction of immortality. Thus, the neoplastic process of the PA-1 cell line involves at least three steps: (1) induction of immortality, (2) activation of the N-ras oncogene, and (3) loss of tumor suppressor function. ^