2 resultados para immobilized and dissolving
em DigitalCommons@The Texas Medical Center
Resumo:
Enterococcus faecium has emerged as an important cause of nosocomial infections over the last two decades. We recently demonstrated collagen type I (CI) as a common adherence target for some E. faecium isolates and a significant correlation was found to exist between acm-mediated CI adherence and clinical origin. Here, we evaluated 60 diverse E. faecium isolates for their adherence to up to 15 immobilized host extracellular matrix and serum components. Adherence phenotypes were most commonly observed to fibronectin (Fn) (20% of the 60 isolates), fibrinogen (17%) and laminin (Ln) (13%), while only one or two of the isolates adhered to collagen type V (CV), transferrin or lactoferrin and none to the other host components tested. Adherence to Fn and Ln was almost exclusively restricted to clinical isolates, especially the endocarditis-enriched nosocomial genogroup clonal complex 17 (CC17). Thus, the ability to adhere to Fn and Ln, in addition to CI, may have contributed to the emergence and adaptation of E. faecium, in particular CC17, as a nosocomial pathogen.
Resumo:
The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^