4 resultados para idiopathic pituitary insufficiency
em DigitalCommons@The Texas Medical Center
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
The pineal gland is known to be light sensitive and to be involved in the seasonal reproduction of male golden hamster Mesocricetus auratus. In general, the pineal gland has been demonstrated to be inhibitory to the reproductive system of the male golden hamster. Melatonin is a pineal hormone which can mimic the action of the pineal gland upon the reproductive system. However, the actual site(s) of melatonin action in the hamster has not been demonstrated. In this study a direct effect of melatonin on the release of FSH and LH from superfused hamster pituitary glands was investigated.^ The superfused pituitary glands showed a stable in vitro basal release of FSH and LH for up to 10 hours. The superfused pituitaries demonstrated reproducible responses to repeated pulses of 10('-8) M LHRH, and a dose-dependent response to stimulation with different concentrations of LHRH.^ Melatonin inhibited the basal release of FSH and LH from superfused hamster pituitary glands. This effect of melatonin was specific and not a general indolamine or catecholamine effect.^ The superfused pituitaries had a diurnal differential responsiveness to physiological concentrations of melatonin with respect to FSH and LH release which were related to the light cycle used to maintain the experimental animals. A LD 14:10 photoperiod cycle was used with light on from 5 a.m. till 7 p.m.. With pituitary glands obtained at 8:30 a.m., the basal release of FSH exhibited an initial inhibition, a gradual rebound at approximately two hours after the beginning of melatonin superfusion, and a significant overshoot of FSH release after the cessation of infusion with melatonin (Morning Response). If the pituitary glands were obtained from hamsters which were sacrificed at 3:30 p.m., the release rate of FSH exhibited an inhibition during the entire period of melatonin infusion with a rebound effect appearing only after melatonin infusion was discontinued (Afternoon Response). There was no significant difference in the responsiveness of the pituitary gland to infusion with melatonin at either 8:30 a.m. or 3:30 p.m. with respect to LH release. Also, melatonin could not inhibit the gonadotropins response to continuous superfusion with 10('-9) M LHRH in pituitaries obtained at either 8:30 a.m. or 3:30 p.m., nor inhibit the stimulatory effect of pulsatile 10('-9) M LHRH. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI^
Resumo:
The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^