2 resultados para high-performance frontal analysis
em DigitalCommons@The Texas Medical Center
High-resolution microarray analysis of chromosome 20q in human colon cancer metastasis model systems
Resumo:
Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^
Resumo:
Occupational exposures to organic solvents, specifically acetonitrile and methanol, have the potential to cause serious long-term health effects. In the laboratory, these solvents are used extensively in protocols involving the use of high performance liquid chromatography (HPLC). Operators of HPLC equipment may be potentially exposed to these organic solvents when local exhaust ventilation is not employed properly or is not available, which can be the case in many settings. The objective of this research was to characterize the various sites of vapor release in the HPLC process and then to determine the relative influence of a novel vapor recovery system on the overall exposure to laboratory personnel. The effectiveness of steps to reduce environmental solvent vapor concentrations was assessed by measuring exposure levels of acetonitrile and methanol before and after installation of the vapor recovery system. With respect to acetonitrile, the concentration was not statistically significant with p=0.938; moreover, exposure after the intervention was actually higher than prior to intervention. With respect to methanol, the concentration was not statistically significant with p=0.278. This indicates that the exposure to methanol after the intervention was not statistically significantly higher or lower than prior to intervention. Thus, installation of the vapor recovery device did not result in statistically significant reduction in exposures in the settings encountered, and acetonitrile actually increased significantly.^