2 resultados para high-acceleration
em DigitalCommons@The Texas Medical Center
Resumo:
DCE-MRI is an important technique in the study of small animal cancer models because its sensitivity to vascular changes opens the possibility of quantitative assessment of early therapeutic response. However, extraction of physiologically descriptive parameters from DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents the contrast agent concentration time course in the blood plasma. This is difficult in small animal models due to artifacts associated with partial volume, inflow enhancement, and the limited temporal resolution achievable with MR imaging. In this work, the development of a suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in mice is described. One obstacle in VIF measurement is inflow enhancement, which decreases the sensitivity of the MR signal to the presence of contrast agent. Because the traditional techniques used to suppress inflow enhancement degrade the achievable spatiotemporal resolution of the pulse sequence, improvements can be achieved by reducing the time required for the suppression. Thus, a novel RF pulse which provides spatial presaturation contemporaneously with the RF excitation was implemented and evaluated. This maximizes the achievable temporal resolution by removing the additional RF and gradient pulses typically required for suppression of inflow enhancement. A second challenge is achieving the temporal resolution required for accurate characterization of the VIF, which exceeds what can be achieved with conventional imaging techniques while maintaining adequate spatial resolution and tumor coverage. Thus, an anatomically constrained reconstruction strategy was developed that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of the initial pass of the contrast agent in mice. Simulation, phantom, and in vivo validation of all components were performed. Finally, the two components were used to perform VIF measurement in the murine heart. An in vivo study of the VIF reproducibility was performed, and an improvement in the measured injection-to-injection variation was observed. This will lead to improvements in the reliability of quantitative DCE-MRI measurements and increase their sensitivity.
Resumo:
Obesity is postulated to be one of the major risk factors for pancreatic cancer, and recently it was indicated that an elevated body mass index (BMI correlates strongly with a decrease in patient survival. Despite the evident relationship, the molecular mechanisms involved are unclear. Oncogenic mutation of K-Ras is found early and is universal in pancreatic cancer. Extensive evidence indicates oncogenic K-Ras is not entirely active and it requires a triggering event to surpass the activity of Ras beyond the threshold necessary for a Ras-inflammation feed-forward loop. We hypothesize that high fat intake induces a persistent low level inflammatory response triggering increased K-Ras activity and that Cox-2 is essential for this inflammatory reaction. To determine this, LSL-K-Ras mice were crossed with Ela-CreER (Acinar-specific) or Pdx-1-Cre (Pancreas-specific) to “knock-in” oncogenic K-Ras. Additionally, these animals were crossed with Cox-2 conditional knockout mice to access the importance of Cox-2 in the inflammatory loop present. The mice were fed isocaloric diets containing 60% energy or 10% energy from fat. We found that a high fat diet increased K-Ras activity, PanIN formation, and fibrotic stroma significantly compared to a control diet. Genetic deletion of Cox-2 prevented high fat diet induced fibrosis and PanIN formation in oncogenic K-Ras expressing mice. Additionally, long term consumption of high fat diet, increased the progression of PanIN lesions leading to invasive cancer and decreased overall survival rate. These findings indicate that a high fat diet can stimulate the activation of oncogenic K-Ras and initiate an inflammatory feed forward loop requiring Cox-2 leading to inflammation, fibrosis, and PanINs. This mechanism could explain the relationship between a high fat diet and elevated risk for pancreatic cancer.