8 resultados para high calcium adaptation
em DigitalCommons@The Texas Medical Center
Resumo:
It is generally believed that 1,25(OH)2D3, bound to its receptor (VDR) contributes to calcium homeostasis by regulating active calcium absorption in the proximal small intestine. However, studying patients with hereditary vitamin D-resistant rickets (HVDRR) provided investigators with a better understanding of VDR's role in calcium homeostasis. HVDRR patients have inactivating mutations in the VDR, and as a consequence they develop hypocalcemia, hyperparathyroidism and severe rickets. However, these phenotypes can be corrected if the patients are given IV infusions of calcium or dietary calcium. This raises the question of what is the physiological significance of VDR-regulated active calcium absorption if calcium homeostasis can be restored independently of the VDR. ^ In order to distinguish the contribution of VDR in the proximal small intestine to overall calcium homeostasis, I generated transgenic mice expressing the human VDR (hVDR) exclusively in the proximal small intestine of mVDR-/- mice by using an hVDR-expressing transgene driven by the duodenal-specific adenosine deaminase enhancer (hVDR+/mVDR-/-). hVDR+/mVDR-/- mice expressed transcriptionally active hVDR only in the proximal small intestine and responded to 1,25(OH)2D3 by up-regulating expression of TRPV6 and calbindin D9K, genes involved in calcium absorption. Furthermore, ligated duodenal loop assays determined that calcium absorption in hVDR+/mVDR-/- mice was as responsive to 1,25(OH)2D3 as in WT mice. Despite having a functional hVDR in the proximal small intestine, hVDR+/mVDR-/- mice were hypocalcemic, had hyperparathyroidism, and were rachitic when fed a normal rodent diet at weaning, as were the mVDR-/- mice. However, when fed a high calcium, phosphorus, and lactose diet (rescue diet), the hVDR+/mVDR-/- mice responded more effectively than the mVDR-/- mice by down-regulation of parathyroid hormone production and by a greater increase in bone mineralization. Furthermore, when three-month-old rachitic mice were fed a rescue diet for 3 weeks, serum calcium and bone mineral content were normalized in hVDR+/mVDR-/- mice, but not in mVDR-/- mice. ^ In conclusion, hVDR expression enabled young mice to better use the rescue diet than mVDR-/- mice. Expression of transgenic hVDR also protected the ability of older mice to respond to the rescue diet despite the absence of the VDR elsewhere in the intestinal tract. I propose that because hVDR+/mVDR-/- mice responded better than mVDR-/- mice to the rescue diet, it is likely that VDR expression in the proximal small intestine is necessary in nutritional (insufficient dietary calcium) and physiological (age) conditions when passive calcium absorption is inadequate. ^
Resumo:
This study was designed to investigate the effect of calcium and fluoride intake, and parity and lactation on the risk of spinal osteoporosis. Height loss was used as a surrogate measure for spinal fractures by taking advantage of documented changes in height found during the 25-year follow-up of the Charleston Heart Study cohort. Women who had lost 2-4" in height or who had no change in height during the follow-up period were defined as case and comparison subjects respectively. Calcium intake when the subjects were "about 25" and in the recent past, average intake of fluoride over 25 years, and parity and history of breastfeeding were ascertained by questionnaire from 54 case and 77 comparison subjects. Low calcium intake in the past decreased the risk of height loss (age-adjusted OR = 0.3, 95%CI: 0.1-0.96) although several potentially important confounding variables could not be adjusted for. There was no association between risk of height loss and present calcium intake (OR = 0.8, 95%CI: 0.3-2.6 for low versus high intake) after adjustment for past calcium intake. High fluoride intake decreased the risk of height loss (adjusted OR = 0.4, 95%CI: 0.1-1.2). The effect of fluoride or calcium intake in the present was modified by the level of the other nutrient. Compared to a low intake of both calcium and fluoride, a high intake of one increased the risk of height loss (crude OR = 3.3 for high fluoride/low calcium, crude OR = 6.0 for high calcium/low fluoride) although a high intake of both was slightly protective (crude OR = 0.7). It is estimated that a "high" nutrient intake in this population was greater than 850mg/day for calcium and 2mg/day for fluoride. After adjustment for age, increasing parity decreased the risk of height loss in women who had never breastfed (OR = 0.2, 95%CI: 0.01-1.7 for 4 or more children). Women who had breastfed were also at lower risk of height loss than nulliparous women (OR = 0.3, 95%CI: 0.1-1.2 for 4 or more children) although at any level of parity, breastfeeding women had a greater risk of height loss than did non-breastfeeding women. ^
Resumo:
High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^
Resumo:
Atherosclerosis is a complex disease resulting from interactions of genetic and environmental risk factors leading to heart failure and stroke. Using an atherosclerotic mouse model (ldlr-/-, apobec1-/- designated as LDb), we performed microarray analysis to identify candidate genes and pathways, which are most perturbed in changes in the following risk factors: genetics (control C57BL/6 vs. LDb mice), shearstress (lesion-prone vs. lesion-resistant regions in LDb mice), diet (chow vs. high fat fed LDb mice) and age (2-month-old vs. 8-month old LDb mice). ^ Atherosclerotic lesion quantification and lipid profile studies were performed to assess the disease phenotype. A microarray study was performed on lesion-prone and lesion-resistant regions of each aorta. Briefly, 32 male C57BL/6 and LDb mice (n =16/each) were fed on either chow or high fat diet, sacrificed at 2- and 8-months old, and RNA isolated from the aortic lesion-prone and aortic lesion-resistant segments. Using 64 Affymetrix Murine 430 2.0 chips, we profiled differentially expressed genes with the cut off value of FDR ≤ 0.15 for t-test, and q <0.0001 for the ANOVA. The data were normalized using two normalization methods---invariant probe sets (Loess) and Quantile normalization, the statistical analysis was performed using t-tests and ANOVA, and pathway characterization was done using Pathway Express (Wayne State). The result identified the calcium signaling pathway as the most significant overrepresented pathway, followed by focal adhesion. In the calcium signaling pathway, 56 genes were found to be significantly differentially expressed out of 180 genes listed in the KEGG calcium signaling pathway. Nineteen of these genes were consistently identified by both statistical tests, 11 of which were unique to the test, and 26 were unique to the ANOVA test, using the cutoffs noted above. ^ In conclusion, this finding suggested that hypercholesterolemia drives the disease progression by altering the expression of calcium channels and regulators which subsequently results in cell differentiation, growth, adhesion, cytoskeletal change and death. Clinically, this pathway may serve as an important target for future therapeutic intervention, and thus the calcium signaling pathway may serve as an important target for future diagnostic and therapeutic intervention. ^
Resumo:
Purpose. The focus of maternal role development, historically, has been on the tasks and processes during pregnancy as they relate to postpartum role transition. The purpose of this study was to investigate how women hospitalized with high-risk pregnancy cognitively construct pregnancy and impending motherhood. ^ Design. The study employed a triangulation design using a convergence model with a dominant focused ethnographic approach. ^ Setting. The antepartum units of two tertiary care centers in a large metropolitan city in southeast Texas. ^ Sample. Data saturation was determined with thirteen (13) primigravid women who had been hospitalized more than 72 hours with preterm labor (PTL) or preterm premature rupture of membranes (PPROM) who subsequently delivered seventeen (17) infants which included 4 sets of twins. ^ Methods. Open-ended, semi-structured interviews and field work were used to explore the development of maternal role in this population. After collecting descriptive data, long individual interviews were conducted and the Prenatal Self Evaluation Questionnaire (PSEQ), an instrument to measure prenatal adaptation to pregnancy, was administered. The interview focused on exploring the woman's experiences of pregnancy and impending motherhood while hospitalized. Interview data and field notes were coded and analyzed using qualitative thematic analytic techniques. The PSEQ was scored and the findings of the qualitative data and PSEQ data were compared. ^ Findings. Thematic analysis of the qualitative data provided an understanding of the cognitive process that occurs as the pregnant woman builds a relationship with the fetus. Thematic analysis resulted in a conceptual model with two complementary components that occur throughout the pregnancy: Establishing a Relationship and Dynamic Equilibrium. Establishing a Relationship includes subthemes of: Courting, Building a Connection, and Engagement. Dynamic equilibrium is the balance between expectations and reality and exists regardless of pregnancy complications. The negotiation of this potential imbalance is triggered by uncertainty, loss of autonomy and control, and isolation and is exacerbated by the high-risk pregnancy and subsequent hospitalization. These triggers can serve as obstacles to maternal role development, but may be mediated by external support from friends and family or health care providers. Support from others may come in the form of anticipatory guidance, presence, or activities that promote self-agency. PSEQ scores were similar to previous reports, but due to the small sample, scores were used primarily for comparison to qualitative data. The qualitative findings were congruent with the PSEQ findings in all of the subscales except in the concern for the well-being of the baby. Interview reports included comments demonstrating significant concern for the well-being of the infant, yet the related subscale did not demonstrate such concern. ^ Conclusions. An understanding of the cognitive process involved in establishing a relationship with the developing fetus related to impending motherhood and the importance of dynamic equilibrium can allow healthcare providers and those who interact with pregnant women to support development of the maternal role and anticipate those barriers that may impede that process. Findings from this study identify those triggers and mediators that influence development of the maternal role and suggest potential intervening strategies for those involved in the care of childbearing families. ^
Resumo:
The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^