7 resultados para hierarchical position

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an extended hierarchical task analysis (HTA) methodology devised to evaluate and compare user interfaces on volumetric infusion pumps. The pumps were studied along the dimensions of overall usability and propensity for generating human error. With HTA as our framework, we analyzed six pumps on a variety of common tasks using Norman’s Action theory. The introduced method of evaluation divides the problem space between the external world of the device interface and the user’s internal cognitive world, allowing for predictions of potential user errors at the human-device level. In this paper, one detailed analysis is provided as an example, comparing two different pumps on two separate tasks. The results demonstrate the inherent variation, often the cause of usage errors, found with infusion pumps being used in hospitals today. The reported methodology is a useful tool for evaluating human performance and predicting potential user errors with infusion pumps and other simple medical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We seek to determine the relationship between threshold and suprathreshold perception for position offset and stereoscopic depth perception under conditions that elevate their respective thresholds. Two threshold-elevating conditions were used: (1) increasing the interline gap and (2) dioptric blur. Although increasing the interline gap increases position (Vernier) offset and stereoscopic disparity thresholds substantially, the perception of suprathreshold position offset and stereoscopic depth remains unchanged. Perception of suprathreshold position offset also remains unchanged when the Vernier threshold is elevated by dioptric blur. We show that such normalization of suprathreshold position offset can be attributed to the topographical-map-based encoding of position. On the other hand, dioptric blur increases the stereoscopic disparity thresholds and reduces the perceived suprathreshold stereoscopic depth, which can be accounted for by a disparity-computation model in which the activities of absolute disparity encoders are multiplied by a Gaussian weighting function that is centered on the horopter. Overall, the statement "equal suprathreshold perception occurs in threshold-elevated and unelevated conditions when the stimuli are equally above their corresponding thresholds" describes the results better than the statement "suprathreshold stimuli are perceived as equal when they are equal multiples of their respective threshold values."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite increasing interest in the relationship between socioeconomic position (SEP) and health, there remains little understanding of the mechanisms through which SEP is related to chronic disease. This dissertation utilized data from 2,592 U.S. households in the 1995 telephone survey of the Aging, Status, and the Sense of Control study to: (1) investigate potential mediating factors in the association between educational level and prevalence of diabetes and (2) to investigate the association between the three major measures of SEP—income, education, and occupation—and the prevalence of diabetes. Regression analyses were conducted to examine the degree to which sense of personal control and social support mediate the association between level of educational attainment and diabetes and to examine the contribution of each of the SEP measures to diabetes. After adjusting for age, obesity, sex, and race, respondents with less than a high school education had greater odds of having diabetes than those with a college degree or higher level of educational attainment, although the corresponding confidence interval contained the null value (OR = 1.2, 95% CI: 0.7, 2.0). Neither sense of control nor social support significantly mediated the association between education and diabetes. However, sense of control was associated with diabetes status (OR = 0.7, 95% CI: 0.5, 1.0). Compared with income and education, employment status was the most strongly associated measure of SEP with diabetes prevalence. After adjusting for age, obesity, sex, and race, respondents who were unable to work due to disability had fourfold greater odds of having diabetes than those who were employed full time (OR = 4.0; 95% CI: 1.9, 8.3). Adding income and/or education to the model did not improve the fit. Understanding the impact of socioeconomic factors on diabetes requires consideration of multiple measures of SEP as well as the psychosocial pathways through which SEP may influence diabetes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^