2 resultados para hexokinase

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased dependence on aerobic glycolysis for energy (ATP) supply has been observed in various human cancer cells. It is plausible to exploit this metabolic alteration for therapeutic benefits by inhibiting glycolysis to preferentially abolish cancer energy metabolism and kill the malignant cells. 3-Bromopyruvate has been shown to be a potent inhibitor of glycolysis capable of inducing severe ATP reduction and cell death in various cancer cell lines, especially cancer cells with mitochondrial defects or under hypoxic conditions. However, the detailed mechanisms of this novel anticancer agent still remain unclear. My study demonstrated that 3-Bromopyruvate caused a covalent modification of hexokinase II, a key glycolytic enzyme, and disrupted its association with mitochondria. This led to mitochondrial permeability transition and a substantial release of apoptosis-inducing faction (AIF) prior to cytochrome c release. Dissociation of HK II from mitochondria using a cell permeable specific peptide also induced the release of AIF and cytochrome c, and caused substantial cell death. HK II-targeted peptide did not cause significant change in mitochondria respiration and glycolysis activity, suggesting that dissociation of this molecule from mitochondria alone can also cause cell death, and that this may be a novel mechanism by which 3-Bromopyruvate exerts its potent cytotoxic action, in addition to its inhibition of the enzyme activity. Another significant new discovery was that 3-Bromopyruvate induced rapid reduction of protein ubiquitination in vivo, which occurred within several hours of drug incubation and before ATP reduction and cell death. Further mechanistic studies showed that this was due to the inhibition the ubiquitin activating enzyme E1 and the conjugating enzyme E2. Knocking down ubiquitin protein expression by siRNA did not suppress mitochondria respiration and glycolysis, but caused significant cell death. Taken together, this study demonstrated that induction of HK II dissociation from mitochondria and inhibition of glycolysis are two newly discovered mechanisms that contribute to the potent anticancer activity of 3-Bromopyruvate, and identified this compound as a valuable chemical tool for research in protein ubiquitination. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.